Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The table shows values of the expressions \(10x^2\) and \(2^x\).
Complete the table.
Make an observation about how the values of the two expressions change as \(x\) becomes greater and greater.
| \(x\) | \(10x^2\) | \(2^x\) |
|---|---|---|
| 1 | 10 | 2 |
| 2 | 40 | 4 |
| 3 | 90 | 8 |
| 4 | 160 | 16 |
| 8 | ||
| 10 | ||
| 12 |
Function \(f\) is defined by \(f(x)=1.5^x\). Function \(g\) is defined by \(g(x)=500x^2 + 345x\).
Create a table of values to show that the exponential expression \(3(2)^x\) eventually overtakes the quadratic expression \(3x^2+2x\).
The table shows the values of \(4^x\) and \(100x^2\) for some values of \(x\).
Use the patterns in the table to explain why eventually the values of the exponential expression \(4^x\) will overtake the values of the quadratic expression \(100x^2\).
| \(x\) | \(4^x\) | \(100x^2\) |
|---|---|---|
| 1 | 4 | 100 |
| 2 | 16 | 400 |
| 3 | 64 | 900 |
| 4 | 256 | 1600 |
| 5 | 1024 | 2500 |
Here is a pattern of shapes. The area of each small square is 1 sq cm.
Select all expressions that give the measure of angle \(A\).
\(\arccos\left(\frac{28}{53}\right)\)
\(\arccos\left(\frac{45}{53}\right)\)
\(\arcsin\left(\frac{28}{53}\right)\)
\(\arcsin\left(\frac{45}{53}\right)\)
\(\arctan\left(\frac{28}{45}\right)\)
\(\arctan\left(\frac{45}{28}\right)\)