Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this How Many Do You See? is for students to subitize or use grouping strategies to describe the images they see.
When students use equal groups and a known quantity to find an unknown quantity, they are looking for and making use of structure (MP7).
¿Cuántos ves? ¿Cómo lo sabes?, ¿qué ves?
The purpose of this activity is for students to solve an area problem with a partially-tiled rectangle. This encourages students to multiply to solve problems involving area, but still provides some visual support to see the arrangement of the rows and the columns. This problem includes a product of 10, with which students should be increasingly comfortable. The total number of square inches is large in order to discourage one-by-one counting although many students may begin with this approach.
Monitor for and select students with the following approaches to share in the Activity Synthesis:
The approaches are sequenced from more concrete to more abstract to help students make connections between their understanding of area measurement, counting methods, and multiplication. It is likely that students will switch their approach as they work on the problem. Students may not yet use multiplication to find the area or represent their thinking. If it does not come up in this activity, there is an opportunity to bring it up in the next. Aim to elicit both key mathematical ideas and a variety of student voices, especially students who haven’t shared recently.
In this activity, students find the areas of rectangles that are not tiled but the sides of which are marked with equally spaced tick marks. The tick marks give students the side lengths of the rectangle, help students visualize a tiled region, and enable them to confirm that multiplying the side lengths gives the number of square units in the rectangle. The work here serves to transition students to using only side lengths to find an area.
Las marcas de los lados de este rectángulo están a 1 metro de distancia.
¿Cuál es el área del rectángulo, en metros cuadrados?
El lado de arriba de este rectángulo tiene marcas que están a 1 metro. El lado izquierdo está marcado con la longitud en metros.
¿Cuál es el área del rectángulo, en metros cuadrados?
“Hoy encontramos el área de rectángulos en los que los cuadrados no eran visibles” // “Today we found the areas of rectangles in which the squares weren’t visible.”
“¿En qué tuvieron que pensar para encontrar el área de rectángulos en los que solo algunos de los cuadrados o ninguno de ellos era visible?” // “What did you need to think about to find the areas of rectangles where only some of the squares were visible or none of the squares were visible?” (I used the squares that I could see to imagine the rest. I used the tick marks to think about how many squares are in each row and how many rows there are. I multiplied the side lengths to find the area if I couldn’t see all the squares.)
“¿Qué necesitan saber para encontrar el área de cualquier rectángulo?” // “What do you need to know to find the area of any rectangle?” (The side lengths.)
¿Qué observas? ¿Qué te preguntas?
Después de aprender sobre los azulejos de Portugal, Elena hace su propia obra de arte con baldosas. Este rectángulo muestra el proyecto que Elena está recubriendo. Cada baldosa cuadrada tiene una longitud de lado de 1 pulgada.
¿Cuántas baldosas se necesitan para recubrir todo el rectángulo? Explica o muestra tu razonamiento.