Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to compare four number lines. It gives students a reason to use language precisely (MP6). It gives the teacher an opportunity to hear how students use terminology to talk about characteristics of the number lines in comparison to one another. During the discussion, ask students to explain the meaning of any terms they use, such as “parts,” “partitions,” “mark,” “label,” “halves,” “fourths,” or “whole.”
¿Cuáles 3 van juntas?
The purpose of this activity is for students to locate 1 on a number line, given the location of a non-unit fraction less than 1 or greater than 1. In either case, it is likely students will reason about unit fractions to locate 1.
In the first problem, students may use the size of thirds to locate 1. In the second problem, they reinforce their knowledge that the denominator of a fraction tells the number of equal parts in a whole and the size of a unit fraction, and that the numerator gives the number of those parts (MP6). Students typically use the denominator to partition a number line, but here they need to use the numerator.
This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writing.
Ubica y marca el 1 en cada recta numérica.
MLR1 Stronger and Clearer Each Time
Optional
The purpose of this activity is for students to use the location of a unit fraction to find another fraction, with a different denominator, on the number line. Students can use their knowledge from the previous activity to place 1 on the number line, and then use that to partition the interval from 0 to 1 to find other numbers. Because students have located only fractions with the same denominator on a single number line, they may want to use more than one number line in this activity. They may or may not label the points they find along the way to . Encourage them to use whatever strategy makes sense to them.
This activity is optional because it goes beyond the depth of understanding required to address grade 3 standards.
Display fraction strips and a number line.
“Con su compañero, hagan una lluvia de ideas sobre todas las cosas que han aprendido hasta el momento acerca de las fracciones. Después compartiremos y anotaremos nuestras ideas” // “Work with your partner to brainstorm all the things you’ve learned about fractions so far. Then we’ll share and record our ideas.” (The numerator is the top part of a fraction and the denominator is the bottom part. Fractions can be represented with diagrams, fraction strips, and number lines. Number lines can be partitioned to show unit fractions and non-unit fractions, and fractions less than 1 and greater than 1. Non-unit fractions are built from unit fractions.)
En esta sección, ubicamos y marcamos fracciones en la recta numérica. Aprendimos cómo partir la recta numérica desde 0 hasta 1 para ubicar fracciones unitarias.
Después, usamos la ubicación de las fracciones unitarias para ubicar otras fracciones.
También aprendimos que algunas fracciones están en el mismo lugar de la recta numérica que los números enteros. En esta recta numérica, podemos ver que se ubica en el mismo lugar que el 1 y que se ubica en el mismo lugar que el 2.
Al final de la sección, usamos lo que sabemos sobre las fracciones unitarias para ubicar el 1 en la recta numérica cuando solo conocíamos la ubicación de una fracción.
Ubica y marca en la recta numérica. Prepárate para explicar cómo razonaste.