Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Which three go together? Why do they go together?
A
B
C
D
Your teacher will give you a set of cards. Work with your partner to choose two categories to sort the cards into. Take turns with your partner to sort each equation into a category.
Then sort the cards into two categories in a different way.
Story 1: Lin had 90 flyers to hang up around the school. She gave 12 flyers to each of three volunteers. Then she took the remaining flyers and divided them up equally between the three volunteers.
Story 2: Lin had 90 flyers to hang up around the school. After giving the same number of flyers to each of three volunteers, she had 12 left to hang up by herself.
In this lesson, we encountered two main types of situations that can be represented with an equation. Here is an example of each type:
After adding 8 students to each of 6 same-sized teams, there were 72 students altogether.
After adding an 8-pound box of tennis rackets to a crate with 6 identical boxes of table tennis paddles, the crate weighed 72 pounds.
The first situation has all equal parts, since additions are made to each team. An equation that represents this situation is , where represents the original number of students on each team. Eight students were added to each group, there are 6 groups, and there are a total of 72 students.
In the second situation, there are 6 equal parts added to one other part. An equation that represents this situation is , where represents the weight of each box of table tennis paddles. There are 6 boxes of table tennis paddles, an additional box that weighs 8 pounds, and the crate weighs 72 pounds altogether.
In the first situation, there were 6 equal groups, and 8 students added to each group. .
In the second situation, there were 6 equal groups, but 8 more pounds in addition to that. .