Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Coming soon!
Coming soon!
What: A Card Sort uses cards or slips of paper that can be manipulated and moved around (or the same functionality enacted with a computer interface). It can be done individually or in groups of 2–4. Students put things into categories or groups based on shared characteristics or connections. This routine can be combined with Take Turns, such that each time a student sorts a card into a category or makes a match, they are expected to explain the rationale while the group listens for understanding. The first few times students engage in these activities, the teacher should demonstrate how the activity is expected to go. Once students are familiar with these structures, less set-up will be necessary. While students are working, the teacher can ask students to restate their question more clearly or paraphrase what their partner said.
Where: Classroom Activities
Why: A Card Sort provides opportunities to attend to mathematical connections using representations that are already created, instead of expending time and effort generating representations. It gives students opportunities to analyze representations, statements, and structures closely and make connections (MP2, MP7).
Fit It indicates activities where students have an opportunity to use a table of points to produce a graph to see patterns and make predictions. Also when appropriate, find a function that best fits the data.
What: In these warm-ups, one problem is displayed at a time. Students are given a few moments to quietly think and give a signal when they have an answer and a strategy. The teacher selects students to share different strategies for each problem, asking, “Who thought about it a different way?” Their explanations are recorded for all to see. Students might be pressed to provide more details about why they decided to approach a problem a certain way. It may not be possible to share every possible strategy in the given time—the teacher may only gather two or three distinctive strategies per problem. Problems are purposefully chosen to elicit different approaches, often in a way that builds from one problem to the next.
Why: Math Talks build fluency by encouraging students to think about the numbers, shapes, or algebraic expressions and rely on what they know about structure, patterns, and properties of operations to mentally solve a problem. While participating in these activities, students need to be precise in their word choice and use of language (MP6). Additionally a Math Talk often provides opportunities to notice and make use of structure (MP7).
What: Students work with a partner or small group. They take turns in the work of the activity, whether it be spotting matches, explaining, justifying, agreeing or disagreeing, or asking clarifying questions. If they disagree, they are expected to support their case and listen to their partner’s arguments. The first few times students engage in these activities, the teacher should demonstrate, with a partner, how the discussion is expected to go. Once students are familiar with these structures, less set-up will be necessary. While students are working, the teacher can ask students to restate their question more clearly or paraphrase what their partner said.
Why: Building in an expectation, through the routine, that students explain the rationale for their choices and listen to another's rationale deepens the understanding that can be achieved through these activities. Specifying that students take turns deciding, explaining, and listening limits the phenomenon where one student takes over and the other does not participate. Taking turns can also give students more opportunities to construct logical arguments and critique others’ reasoning (MP3).
Coming soon!