Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Imagine slicing each figure into parallel cross-sections. Select all figures that have congruent cross-sections in a particular direction.
triangular pyramid
square pyramid
rectangular prism
cube
cone
cylinder
sphere
Imagine an upright cone with its base resting on your horizontal desk.
Sketch the cross-section formed by intersecting each plane with the cone.
Name 2 figures for which a circle can be a cross-section.
Sketch the solid of rotation formed by rotating the given two-dimensional figure using the dashed vertical line as an axis of rotation.
Draw a two-dimensional figure that could be rotated using a vertical axis of rotation to give the cone shown.
A regular hexagon and a regular octagon are both inscribed in the same circle. Which of these statements is true?
The perimeter of the hexagon is less than the perimeter of the octagon, and each perimeter is less than the circumference of the circle.
The perimeter of the octagon is less than the perimeter of the hexagon, and each perimeter is less than the circumference of the circle.
The perimeter of the hexagon is greater than the perimeter of the octagon, and each perimeter is greater than the circumference of the circle.
The perimeter of the octagon is greater than the perimeter of the hexagon, and each perimeter is greater than the circumference of the circle.
Technology required. Find the perimeter of the figure.
Match each trigonometric function to a ratio. You may use ratios more than once.
\(\tan(A)\)
\(\tan(B)\)
\(\cos(A)\)
\(\cos(B)\)
\(\sin(A)\)
\(\sin(B)\)
\(\frac{y}{z}\)
\(\frac{x}{z}\)
\(\frac{x}{y}\)
\(\frac{y}{x}\)
Explain how you know that lines \(m\) and \(ℓ\) are parallel.