Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Warm-up is to elicit strategies for quantifying numbers of objects arranged in rows and columns, and the language used to describe such arrangements. It gives students a reason to use language precisely (MP6). During the discussion, ask students to explain the meaning of any terms they use, such as “row,” “column,” “array,” “group,” “line,” “grid,” and “rectangle.”
¿Cuáles 3 van juntos?
The purpose of this activity is for students to create and describe rectangles of a certain area. Students work in groups of 2. One partner creates a rectangle and describes it, and the other partner creates a matching rectangle, based on the description. Then students compare how their rectangles are the same and how they are different. Students should describe their rectangles to their partners without revealing the total numbers of squares they used, so that the focus is on understanding the rectangular structure. In the Activity Synthesis, students share language that helped them understand the rectangles their partners built. When students revise their language to be more precise in the descriptions of their rectangles, they attend to precision (MP6).
¿Puedes dibujar con tu compañero el mismo rectángulo sin mirar el dibujo del otro?
The purpose of this activity is for students to find the areas of rectangles by counting squares. Larger rectangles provide more opportunities for students to practice counting strategies, using the structure of the rectangles to group the individual squares (MP7). Rectangles in this activity lend themselves to show groups of twos, fives, or tens in rows or columns. Students may also see other ways to create equal groups within rectangles. For example, the second rectangle, with an area of 30 square units, can be seen as 3 groups of 10. If students finish quickly, encourage them to confirm their areas by counting another way. Emphasize that each area is in square units.
Encuentra el área de cada rectángulo e incluye las unidades. Explica o muestra tu razonamiento.
“En las últimas lecciones, aprendimos sobre el área. Aprendimos que el área es la cantidad de espacio que cubre una figura. Después, aprendimos que podíamos encontrar el área de figuras de dos dimensiones contando cuántos cuadrados cubren la figura” // “In the last few lessons, we learned about area. We learned that area is the amount of space covered by a shape. Then we learned that we could find the area of two-dimensional shapes by counting how many squares cover the shape.”
Display a 3-by-2 array of dots next to a 3-by-2 gridded rectangular area.
“Hoy también repasamos los arreglos durante el calentamiento. Este es un arreglo que está al lado de un área rectangular. ¿En qué son diferentes un área y un arreglo?” // “We also revisited arrays today during our Warm-up. Here is an array next to a rectangular area. How is area different from an array?” (Area is the space covered by a shape, and an array is a collection of objects.)
“¿Qué grupos iguales ven en estas representaciones?” // “How do you see equal groups in these representations?” (You can see equal groups in the rows and the columns. In the rectangle, you can see squares, but in the array, you count the objects.)
“Durante cinco minutos, respondan una o varias de estas preguntas: ¿cómo describirían el área con sus propias palabras? ¿Cómo podemos medir el área? ¿Qué dudas tienen todavía sobre el área?” // “Take five minutes to respond to one or more of these prompts: Describe area in your own words. How can we measure area? What lingering questions do you have about area?” (Area is the amount of space that a shape covers. We can count squares to find the area of a shape in square units. How do you find the area of a triangle?)
En esta sección, aprendimos que el área es la cantidad de espacio que cubre una figura.
Vimos que para medir el área, podemos contar los cuadrados de un recubrimiento. Cuando recubrimos una figura, debemos asegurarnos de que los cuadrados cubran toda la figura sin espacios ni sobreposiciones.
El área se mide en unidades cuadradas. Cada cuadrado de este rectángulo mide 1 unidad cuadrada. El área de este rectángulo recubierto es 24 unidades cuadradas.