Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to compare four shapes that have been partitioned and examine the features of the shapes and the partitions. In making comparisons, students have a reason to use language precisely (MP6). The observations here prepare students to explore fractions later in the lesson and enable the teacher to hear how students describe the features that they see. During the Activity Synthesis, ask students to explain the meaning of any terms they use, such as “partition,” “whole,” “parts,” “pieces,” “equal,” and “halves.”
¿Cuáles 3 van juntas?
Card Sort Partitions Cards
The purpose of this activity is for students to revisit ideas about how to partition shapes into halves, thirds, and fourths. Students sort a set of shapes into categories, based on their shared attributes. Monitor for students who distinguish shapes that have been partitioned into equal-size parts and shapes that have not. This distinction will be used to review what it means for a part of a shape to be a half, a third, or a fourth.
Sorting the shapes gives students an opportunity to identify important common characteristics or structures, in this case the number and the size of the parts (MP7). When students specify that halves, thirds, and fourths of a shape need to be equal in size, they are attending to precision (MP6).
Students will use the cards again during the Lesson Synthesis.
Tu profesor te va a dar varias tarjetas que muestran figuras que están partidas o divididas en partes.
Clasifica las tarjetas en 2 categorías que tengan sentido para ti. Prepárate para explicar el significado de tus categorías.
Fold and Name Handout
The purpose of this activity is for students to partition rectangles into thirds, fourths, sixths, and eighths before learning the names “sixth” and “eighth.” Students do so by folding rectangular strips of paper into equal-size parts. While folding, students may notice that thirds can be further partitioned to make sixths and that fourths can be further partitioned to make eighths, which will be explored more in a future lesson. The focus of the Activity Synthesis should be on naming sixths and eighths, as they are new terms for students.
Students will use the partitioned rectangles during the Lesson Synthesis.
| número de partes iguales | nombre de cada parte |
|---|---|
| 2 | medio |
| 3 | tercio |
| 4 | cuarto |
| 6 | |
| 8 |
| number of equal parts | name of each part |
|---|---|
| 2 | half |
| 3 | third |
| 4 | fourth |
| 6 | |
| 8 |
“Antes, habíamos usado el término ‘medio’ para referirnos a cada parte cuando una figura completa estaba partida en dos partes iguales. Habíamos usado ‘tercio’ para referirnos a cada una de las tres partes iguales, y ‘cuarto’ para referirnos a cada una de las cuatro partes iguales” // “In the past, we’ve used the term ‘half’ to refer to each part when a whole shape is partitioned into two equal parts. We’ve used ‘third’ to refer to each of three equal parts, and ‘fourth’ to refer to each of four equal parts.”
“Hoy aprendimos a usar ‘sexto’ para referirnos a cada parte cuando una figura completa está partida en 6 partes iguales y ‘octavo’ cuando está partida en 8 partes iguales” // “Today, we learned to use ‘sixth’ to refer to each part when a whole shape is partitioned into 6 equal parts and ‘eighth’ when the whole is partitioned into 8 equal parts.”
“Además de usar palabras para describir estas partes iguales, también podemos usar números” // “In addition to using words to describe these equal parts, we also can use numbers.”
Write each fraction as it is named:
“Un medio se puede escribir como el número ” // “One-half can be written as the number .”
“Un tercio se puede escribir como el número ” // “One-third can be written as the number .”
“Un cuarto se puede escribir como el número ” // “One-fourth can be written as the number .”
“¿Cómo escribiríamos un sexto y un octavo como números?” // “How would we write one-sixth and one-eighth as numbers?” ( and )
“Los números que usamos para describir las partes iguales de un todo se llaman fracciones. Al todo le llamaremos ‘la unidad’. Cada fracción tiene dos partes que están separadas por una barra” // “The numbers that we use to describe the equal parts of a whole are called fractions. Each fraction has two parts separated by a bar.”
“¿Qué creen que representa la parte que está debajo de la barra?” // “What do you think the part below the bar represents?” (the number of equal parts that make up the whole)
“¿Qué hay del 1 que está encima de la barra?” // “What about the 1 above the bar?” (the one in “one-half,” “one-third,” and so on)
Display a square partitioned into two equal parts, with each part labeled with , such as:
“Podemos marcar las partes iguales de una figura con fracciones. Si este cuadrado es la figura completa o uno, cada parte es un medio” // “We can label the equal parts in a shape with fractions. If this square is the whole shape or one, each part is one-half.”
“Busquen todas las tarjetas de la primera actividad que muestran una figura partida en dos partes iguales. Marquemos cada mitad con la fracción ” // “Find all the cards from the first activity that show a shape partitioned into two equal parts. Let's label each half with the fraction .”
“Marquemos las partes de cada uno de sus rectángulos con fracciones” // “Let’s label the parts in each of your rectangles with fractions.”