Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Number Talk encourages students to look for structure in multiplication expressions and to rely on properties of operations to mentally solve problems. Reasoning about products of whole numbers helps to develop students’ fluency with multiplication within 100.
Encuentra mentalmente el valor de cada expresión.
Secret Fraction Stage 1 Cards
Secret Fraction Stage 1 Directions, Spanish
The purpose of this activity is for students to learn Stage 1 of the Secret Fractions center. Students practice building non-unit fractions from unit fractions. Each partner starts with three “secret” non-unit fraction cards and five unit fraction cards. On their turn, students choose either to ask their partner for a unit fraction or to trade one of their secret fractions for a new secret fraction card. If the student has the requested secret fraction, they give it to their partner. If they do not have the requested unit fraction, they tell their partner to pick a unit-fraction card from the stack. After building each secret fraction, students reveal the secret fraction and explain how they made that fraction. For example, to complete a secret fraction card with , students need 3 cards with . A diagram is available in the blackline master that students can use to explain their thinking. The first student to build all three secret fractions wins. The Activity Synthesis highlights strategies students used to build their non-unit fractions.
Folders or other objects can be used to keep students’ work hidden.
El objetivo del juego es ser el primero en construir 3 fracciones secretas con fracciones unitarias.
Si te quedas sin tarjetas de fracciones unitarias, mezcla las tarjetas que has usado y ponlas boca abajo para formar una pila.
The purpose of this activity is for students to use diagrams to represent situations that involve non-unit fractions. The Activity Synthesis focuses on how students partition and shade the diagrams and how the end of the shaded portion could represent the location of an object. When students interpret the different situations in terms of the diagrams, they reason abstractly and quantitatively (MP2).
Estas son 4 situaciones sobre jugar Pilolo y 4 diagramas. Cada diagrama representa la longitud de una calle en la que se juega.
Representa cada situación con un diagrama. Prepárate para explicar tu razonamiento.
Un estudiante camina de la longitud de la calle y esconde una piedra.
Un estudiante camina de la longitud de la calle y esconde una moneda de un centavo.
Un estudiante camina de la longitud de la calle y esconde un palo.
Un estudiante camina de la longitud de la calle y esconde una moneda de un centavo.
Display some completed gameboards from the first activity and one of the diagrams that represents a situation from the second activity.
“¿En qué se pareció formar las fracciones en el juego a representar las situaciones? ¿En qué fue diferente?” // “How was making the fractions in the game like representing the situations? How was it different?” (The parts in both activities had to be equal in size. We had to count the parts in both activities. The fractions were made from unit fractions. In the first activity, we had the pieces to build the fraction, but in the second activity, we had to partition and shade in the parts to make the fraction.)
“En ambas actividades pudimos ver cómo se usan las fracciones unitarias para formar otras fracciones” // “In both activities, we were able to see how unit fractions are used to make other fractions.”
En esta sección, aprendimos a hacer particiones de figuras en medios, tercios, cuartos, sextos y octavos. También aprendimos a describir cada una de esas partes con palabras y con números.
Los números que usamos para describir estas partes de igual tamaño son fracciones.
La fracción se lee “un cuarto” porque representa una (1) de las 4 partes iguales de una unidad partida en cuartas partes.
La fracción se lee “tres cuartos” porque representa 3 partes, cada una de tamaño un cuarto o .
Las fracciones que describen solo una (1) de las partes iguales de una unidad se llaman fracciones unitarias. Ejemplos de fracciones unitarias: , , , , .
Aprendimos que el número de abajo de una fracción nos dice en cuántas partes iguales está partida la unidad. El número de arriba de la fracción nos dice cuántas partes iguales se describen.