Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Warm-up is to elicit the idea that the size and the number of unit fractions can help us compare fractions. Students can see that the two diagrams have the same-size parts, but they cannot see how much of one diagram is shaded, prompting them to think about the number of shaded parts. While students may notice and wonder many things about these images, what fractions could be represented by the partially hidden strip is the important discussion point.
¿Qué observas? ¿Qué te preguntas?
The purpose of this activity is for students to compare two fractions with the same denominator. Students may use any representation to reason how the size or the length of the parts in the two fractions are the same because the denominator is the same, but that there are different numbers of those parts because the numerators are different (MP2). Students also are reminded about the meanings of the symbols > and <.
Share and display responses. Ask students to read aloud each statement that is shared.
En cada pareja de fracciones, marca la fracción que es mayor. Explica o muestra tu razonamiento.
En cada caso, usa el símbolo > o el símbolo < para que la afirmación sea verdadera. Explica o muestra tu razonamiento.
Si te queda tiempo: Escribe un número en el espacio del numerador de la fracción para que la afirmación sea verdadera. Explica o muestra tu razonamiento.
Spin to Win Same Denominator Recording Sheet, Spanish
Spin to Win Same Denominator Spinner
The purpose of this activity is for students to practice comparing fractions with the same denominator while playing a game. Students spin a spinner for the numerator of their fractions, and then locate and label the fractions on a number line to determine which fraction is greater.
En este juego, van a ubicar y marcar fracciones en rectas numéricas. Escojan un lápiz de un color distinto al lápiz de su compañero para que puedan saber de quién es cada fracción en cada recta numérica.
“Hoy comparamos fracciones que tenían el mismo denominador” // “Today we compared fractions with the same denominator.”
“¿Cómo comparan fracciones que tienen el mismo denominador? ¿Su estrategia siempre funciona?” // “How do you compare fractions with the same denominator? Does your strategy always work?” (I can just look at the numerators to see which is greater. This always works because the whole is split into the same number of same-size parts if the denominator is the same, so we just need to think about how many of those parts we have, which is given by the numerator.)