Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this True or False is to elicit strategies and understandings students have for adding multi-digit numbers. It prompts students to rely on their understanding of the properties of operations and place value. The strategies used here will be helpful as students find the perimeter of shapes with repeated side lengths later in the lesson.
En cada caso, decide si la afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.
The purpose of this activity is for students to understand that many different shapes can have the same perimeter. Students start to focus more specifically on shapes with repeated side lengths, so they can leverage the efficient addition strategies elicited in the Warm-up (MP7).
Encuentra una figura que tenga el mismo perímetro que una de las 3 figuras que escogiste antes.
The purpose of this activity is for students to draw shapes with specific perimeters. Students may create any shape that uses horizontal and vertical lines. Since diagonal lines that connect the dots are not one length unit, students cannot find the perimeter of shapes that include diagonal sides. Encourage students to be creative in drawing their shapes to reinforce the idea that different shapes can have the same perimeter.
En cada caso, dibuja 2 figuras que tengan ese perímetro.
12 unidades
26 unidades
48 unidades
Con tu compañero, escoge un perímetro en unidades. Después dibuja una figura que tenga ese perímetro y no se la muestres a tu compañero.
Compartan las figuras que dibujaron y discutan en qué se parecen y en qué son diferentes.
“Hoy aprendimos que figuras diferentes pueden tener el mismo perímetro” // “Today we learned that different shapes can have the same perimeter.”
“¿Cómo le explicarían a alguien que esto es posible?” // “How would you explain to someone how this is possible?” (The perimeter is the total length of all the sides of a shape, and there are different ways to add numbers to get the same sum.)
Consider using a string of interconnected paper clips to form different shapes. The shapes would have the same perimeter because the length of the string (or the number of paper clips) hasn’t changed.