Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Number Talk is to elicit strategies and understandings students have for making a ten when adding within 20. The numbers chosen lend themselves to making a ten to find the value of the sum. These understandings help students develop fluency and will be helpful later in this lesson when students make a ten when adding one-digit numbers and two-digit numbers.
Find the value of each expression mentally.
The purpose of this activity is for students to determine the unknown addend in equations with sums that are multiples of 10. The first two problems are represented using both ten-frames and equations to encourage students to visualize the unknown addend. Students may initially find the unknown addend using fingers or math tools, then see that they can use known facts to combine the ones to make ten.
During the Activity Synthesis, the teacher records equations to show how the student decomposed the two-digit addend and used a known fact to make ten. For example, to solve , the teacher records:
This notation and the discussion that follows can help students transition from counting on to the next ten to using the facts they know within 10 to help them add within 100. This also prepares them for the next activity where they describe making a ten using place value understanding.
Find the number that makes each equation true.
The purpose of this activity is for students to add one-digit and two-digit numbers with composing a ten and deepen their understanding of place value. In this activity, students make sense of two different addition methods where an addend is decomposed to make a ten. Students then determine the next step needed to find the value of the original sum. Invite students to use different representations to make sense of these methods including connecting cubes and base-ten drawings. Completing the start of a calculation as students do here requires critically analyzing, understanding, and expressing different strategies (MP3).
Students then have an opportunity to add using one of these methods and the representations that make sense to them. Monitor for students who show composing a new unit of ten using connecting cubes or base-ten diagrams. Students use appropriate tools strategically as they choose which tools help them add (MP5). As selected students share their thinking during the Activity Synthesis, record their thinking as drawings and equations so that students can connect the method to the concept of making a new unit of ten from 10 ones.
For example:
Number Cards 0–10
Target Numbers Stage 1 Recording Sheet
The purpose of this activity is for students to learn a new center called Target Numbers. Students add a one-digit number to a two-digit number with composing a ten in order to get as close to 95 as possible. Students take turns picking a number card, adding it to their starting number for the round, and writing an equation. Students start their first equation with 55 and then the sum becomes the first addend in the next round. The player who gets closest to 95 in 6 rounds, without going over, is the winner. Students may use any method they want to find the value of each sum. Students should be encouraged to think about how they can decompose the one-digit number in order to compose a new ten. During the Activity Synthesis, the teacher records equations that match student thinking and encourages students to make connections between the equation and how the student found the sum.
“Today we added two-digit and one-digit numbers and wrote equations. Choose one of your favorite equations from the game we played. Explain to a partner how you found the sum. You may use connecting cubes or drawings to help you explain your method.”
Display the sentence frame: “I heard you say . . . .”
“After your partner shares, restate what you heard. Then ask your partner if you restated their thinking accurately.”
Repeat as time allows.
Elena and Andre found the value of .
Elena started with .
What does Elena need to do next?
Show your thinking using drawings, numbers, or words.
Andre started with .
What does Andre need to do next?
Show your thinking with drawings, numbers, or words.
Find the value of .
Show your thinking using drawings, numbers, or words.