Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The solution to a system of equations is \((6,\text-3)\). Choose two equations that might make up the system.
\(y=\text-3x+6\)
\(y=2x-9\)
\(y=\text-5x+27\)
\(y=2x-15\)
\(y=\text-4x+27\)
A car is traveling on a small highway and is either going 55 miles per hour or 35 miles per hour, depending on the speed limit, until it reaches its destination 200 miles away. Let \(x\) represent the amount of time in hours that the car is going 55 miles per hour, and let \(y\) be the time in hours that the car is going 35 miles per hour. An equation describing the relationship is \(\displaystyle 55x + 35y = 200.\)
The graph represents an object that is shot upwards from a tower and then falls to the ground. The independent variable is time in seconds and the dependent variable is the object’s height above the ground in meters.