Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
¿Qué observas?
¿Qué te preguntas?
Kiran tiene algunos libros.
Su amigo le da algunos libros más.
The purpose of this activity is for students to make sense of and solve a new type of story problem—Add To, Change Unknown. Students may solve in any way that makes sense to them (MP1). In addition to the methods listed below, look for the different ways students plan their strategy. For example, look for students who may use two different colors of objects or intentionally keep the objects or drawings they start with physically separated from those they add on.
Monitor for and select students with the following approaches to share in the Synthesis:
The approaches are sequenced from more concrete to more abstract to help students make sense of the ways in which each approach represents the actions and the answer to the question in an Add to, Change Unknown story problem. Aim to elicit both key mathematical ideas and a variety of student voices, especially students who haven't shared recently.
Kiran tiene 6 libros.
Su amigo le da algunos libros más.
Ahora Kiran tiene 8 libros.
¿Cuántos libros recibió Kiran de su amigo?
Muestra cómo pensaste. Usa dibujos, números o palabras.
The purpose of this activity is for students to represent and solve an Add To, Result Unknown or an Add To, Change Unknown story problem. Students then compare each problem, including the structure of the problems and the strategies used to represent and solve them. Students attend to precision and use clear and precise language to explain how they solved and represented the problems (MP6). The Activity Synthesis draws out differences in the story problems as well as differences in how they are solved.
Students will be working on 1 of the 2 problems with a partner. Consider different ways you may read the problems to students to ensure they all have access to mathematics. For example, you may read both problems to students before they work or you may consider reading the first problem, inviting students assigned to that problem to start on their work, and then read the next problem to the remaining students. You may also consider assigning roles to students who may be able to support rereading the story or clarifying the task directions.
Mai tiene 5 libros sobre el espacio.
Ella toma prestados 4 más.
¿Cuántos libros sobre el espacio tiene ahora?
Muestra cómo pensaste. Usa dibujos, números o palabras.
Mai tiene 5 libros sobre el espacio.
Ella toma prestados algunos más.
Ahora tiene 9 libros sobre el espacio.
¿Cuántos libros tomó prestados Mai?
Muestra cómo pensaste. Usa dibujos, números o palabras.
“Hoy representamos y resolvimos problemas-historia en los que se agregó algo. A veces sabíamos cuánto había al comienzo y cuánto se agregó, pero no conocíamos el total. A veces sabíamos cuánto había al comienzo y cuál era el total, pero teníamos que averiguar cuánto se agregó” // “Today we represented and solved story problems where something was added. In one story, we knew how much we started with and how much was added, but we didn’t know the total. In other stories we knew how much we started with and the total, but we had to figure out how much was added.”
Reread the story problems from the previous activity.
Display and read:“Relacionen cada una de estas afirmaciones con una de las historias que resolvimos. Expliquen cómo se relacionan” // “Match each of these statements to one of the stories we solved. Explain how they match.”
Display .
“Podemos representar ‘5 y 4 es algo’ con esta ecuación. El cuadro muestra que no sabemos el total. El total es desconocido” // “We can represent ‘5 and 4 is something’ with this equation. The box shows that we do not know the total, The total is unknown.”
“Sabemos que necesitamos sumar. Los números que sumamos en la ecuación se llaman sumandos” // “We do know what we need to add. The numbers we add in an equation are called addends.”
Display .
“Podemos representar ‘5 y algo es 9’ con esta ecuación. El cuadro muestra que no sabemos uno de los números que estamos sumando para obtener un total de 9. No sabemos uno de los sumandos. Un sumando es desconocido” // “We can represent ‘5 and something is 9’ with this equation. The box shows that we do not know one of the numbers we are adding to get a total of 9. We do not know one of the addends. An addend is unknown.”
“Vamos a seguir trabajando con problemas de sumandos desconocidos” // “We are going to work more with problems with unknown addends.”
If students add 6 and 8, consider asking:
If student posters show the quantities in the story, but do not yet clearly show the answer to the problem, consider asking: