Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Encuentra mentalmente el valor de cada expresión.
The purpose of this activity is for students to match story problems, in the context of money, to tape diagrams. Students make sense of stories and determine which diagram represents each situation. One pair of problems are one-step stories while the other pair are two-step stories. The numbers in the stories are the same, so students will have to focus on the relationships between the quantities in the stories to match them to tapes (MP2).
Students may choose and justify matches different from those given in the student responses (MP3). For example, diagram B could match Jada’s story. But this story is a comparison and naturally matches diagram C, whereas both parts of diagram B make up Diego’s money. Both two-step problems as well, could be represented by either diagram A or diagram D. For the basketball story, we know that the basketball costs \$ less than the football and the soccer ball combined. For the clothes, we know that the pants cost \$ and want to know how much more the shirt and the shoes cost. Diagram A matches the clothes story because the price of the pants, 39, is known but the difference is not known. Diagram D matches the basketball story because the difference, 39, is known.
Escribe cada letra al lado del problema-historia que el diagrama representa.
Un balón de baloncesto cuesta \$39 menos que un balón de fútbol y uno de fútbol americano juntos.
El balón de fútbol cuesta \$29. El balón de fútbol americano cuesta \$68.
¿Cuántos dólares cuesta el balón de baloncesto? _____
Jada está ahorrando para comprar un set gigante de bloques para armar. El set cuesta \$68. Jada tiene \$39.
¿Cuánto más necesita? _____
Un par de pantalones cuesta \$39.
Una camisa cuesta \$29. Un par de zapatos cuesta \$68.
¿Cuántos dólares más que los pantalones cuestan la camisa y los zapatos juntos? _____
Diego tiene \$39. Él recibe dinero por su cumpleaños. Ahora tiene \$68.
¿Cuánto dinero recibió por su cumpleaños? _____
The purpose of this activity is for students to solve two-step problems, without the scaffold of having the first step explicitly stated. Students solve in a way that makes sense to them and may use diagrams to help them make sense of the story. In the Activity Synthesis, the tape diagram is highlighted.
Muestra cómo pensaste. Usa dibujos, números o palabras. Escribe el signo de dólar (\$) en tu respuesta.
“Hoy resolvimos diferentes tipos de problemas-historia y usamos diagramas para ayudarnos a entenderlos” // “Today we solved different types of story problems and used diagrams to help make sense of them.“
Display the image from the first activity.
“Cuéntenle a su pareja una historia sobre dinero que pueda ser representada por este diagrama” // “Tell your partner a story about money that this diagram could represent.” (_____ had \$39 and _____ had \$68. How much more money does _____ have than _____?)
Aprendimos los valores de los quarters, dimes, nickels y pennies. También aprendimos cómo reconocer cada moneda. Usamos la suma y estrategias de conteo para encontrar los valores de colecciones de monedas. Aprendimos que 1 dólar tiene el mismo valor que 100 centavos. Combinamos monedas para formar $1. También resolvimos problemas-historia sobre dinero.