Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
¿Qué observas? ¿Qué te preguntas?
The purpose of this activity is for students to share a collection of objects with a partner so that both students receive the same amount and as many objects as possible. They separate groups of objects into 2 equal groups and identify numbers of objects that can be split into 2 equal groups with “no leftovers” and those that can be split into 2 equal groups with “some leftovers.” In the Synthesis, students discuss the fact that numbers with “some leftovers” can only have 1 leftover. Create a t-chart that lists the numbers that students find for each category. Students will add more to the t-chart in the next lesson.
When students notice that some collections of objects can be shared equally while others cannot, they observe an important mathematical structure (MP7) which they will name in a future lesson.
This activity uses MLR8 Discussion Supports. Advances: speaking.
Escoge un recipiente. Comparte las fichas equitativamente con tu compañero. Después completa la tabla.
| total | mi parte | la parte de mi compañero | cantidad que sobra |
|---|---|---|---|
MLR8 Discussion Supports
Andre tiene 17 canicas. Él quiere jugar un juego con su hermana. Cada uno debe empezar con el mismo número de canicas. Quieren usar tantas canicas como puedan.
¿Qué ocurriría si Andre tuviera 18 canicas? ¿Cuántas recibiría cada jugador? ¿Usarían todas la canicas? Muestra cómo pensaste. Usa dibujos, números o palabras.
Draw 12 dots or arrange 12 counters in the following configurations:
“¿Cuáles de estas representaciones les ayudan a saber que es posible separar 12 bloques en 2 grupos iguales?” // “Which representations help you see if 12 blocks could be split into 2 equal groups?” (A helps because I can see that each row has the same amount, and because there are 2 groups with the dots in each group matched up. C helps because I can see the 2 groups, and there are the same amount of dots in each group.)