Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Number Talk encourages students to look for structure in multiplication expressions and to rely on properties of operations to mentally solve problems. Reasoning about products of whole numbers helps to develop students’ fluency.
Encuentra mentalmente el valor de cada expresión.
The purpose of this activity is for students to use diagrams to reason about equivalence and to reinforce their awareness of the relationship between fractions that are equivalent.
Students show that a shaded diagram can represent two fractions, such as and , by further partitioning given parts or by composing larger parts from the given parts. Unlike with the fraction strips, where different fractional parts are shown in rows and students could point out where and how they see equivalence, here students need to make additional marks or annotations to show equivalence.
In upcoming lessons, students will extend similar strategies to reason about equivalence on a number line—by partitioning the given intervals on a number line into smaller intervals or by composing larger intervals from the given intervals.
In the first problem, students construct a viable argument in order to convince Tyler that of the rectangle is shaded (MP3).
El diagrama representa 1.
Jada dice que representa . Tyler no está seguro.
¿Estás de acuerdo con Jada? Si es así, explica o muestra cómo convencerías a Tyler de que Jada tiene razón. Si no, explica o muestra tu razonamiento.
Cada diagrama representa 1.
Muestra que la parte sombreada de este diagrama representa tanto como .
Muestra que la parte sombreada de este diagrama representa tanto como .
Muestra que la parte sombreada de este diagrama representa tanto como .
The purpose of this activity is for students to generate equivalent fractions, including for fractions greater than 1, given partially shaded diagrams. Students may use strategies from an earlier activity—partitioning a diagram into smaller equal parts, or making larger equal parts out of existing parts—or patterns they observed in the numerators and the denominators of equivalent fractions (MP7).
Cada diagrama representa 1. Escribe dos fracciones que representen la parte sombreada de cada diagrama.
Este es otro diagrama.
If students name a fraction based only on the given partitions, consider asking:
“Hoy vimos que las partes sombreadas de un diagrama pueden ser representadas por varias fracciones equivalentes” // “Today we saw that the shaded parts of a diagram can be represented by multiple equivalent fractions.”
Display a diagram of labeled fraction strips from an earlier activity, and a couple of shaded diagrams that show equivalent fractions from this activity.
“¿Cómo usamos las tiras de fracciones como ayuda para ver fracciones equivalentes y darles un nombre?” // “How did we use the fraction strips to help us see and name equivalent fractions?” (We could see if some number of parts in one row is the same size as the parts in another row. The labels on the strips help us name the fractions that are equivalent.)
“¿Cómo nos ayudaron los diagramas sombreados de esta actividad a ver fracciones equivalentes y darles un nombre?” // “How did the shaded diagrams in this activity help us see and name equivalent fractions?” (We could either partition the diagram into smaller equal parts, or put the parts together to make larger equal parts.)