Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Warm-up is to elicit the idea that fractions can be used to describe lengths. While students may notice and wonder many things about this statement, the idea that Han and Tyler could have run the same distance or different distances is the important discussion point.
¿Qué observas? ¿Qué te preguntas?
Tyler corrió parte de la longitud de un sendero.
Han corrió parte de la longitud del mismo sendero.
The purpose of this activity is for students to explain equivalence, using a number line. Students are given situations in a measurement context and have to determine whether the distance is the same. Students are encouraged to use a number line to provide an opportunity to explain fraction equivalence as fractions that are at the same location. They may choose to use two number lines for each question (one for each fraction). Choosing to use one number line or two will be discussed in the Synthesis of the next activity.
When they identify whether or not two fractions of the same trail represent the same distance, students reason abstractly and quantitatively (MP2).
Algunos estudiantes corrieron por el mismo sendero en un parque. Decide si cada estudiante corrió la misma distancia que su pareja .
Puedes usar rectas numéricas si te ayuda.
Elena corrió del sendero.
Han corrió del sendero.
Jada corrió del sendero.
Kiran corrió del sendero.
Lin corrió del sendero.
Mai corrió del sendero.
The purpose of this activity is for students to locate fractions on the number line, and find pairs of fractions that are equivalent. Students can use a separate number line for each denominator, but they also can place fractions with different denominators on the same number line to show equivalence. Focus explanations about why fractions are equivalent on the fact that they share the same location. In the Activity Synthesis, discuss how one number line or two can be used to compare fractions.
Ubica y marca los siguientes números en una recta numérica. Puedes usar más de una recta numérica si quieres.
, , , , , , , , , ,
Usa tus marcas para encontrar 4 parejas de fracciones que sean equivalentes. Escribe ecuaciones para representarlas.
Si te queda tiempo: Usa las rectas numéricas para generar todas las fracciones equivalentes que puedas.
The purpose of this activity is for students to practice generating equivalent fractions. The goal of each round is to use the numbers on the number cubes to complete a statement that shows that two fractions are equivalent. Students roll 6 number cubes and try to use 4 of the numbers to create a statement that shows two equivalent fractions. If students roll a 5 (or a blank), they may choose any number to use. Students may choose to re-roll any of their number cubes up to 2 times. Students get a point for every true statement they make. Students may choose to use fraction strips, diagrams, or number lines to prove that their fractions are equivalent. If students choose to use diagrams, monitor to make sure they are drawing equal-size wholes.
Ronda 1:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Ronda 2:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Ronda 3:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Ronda 4:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Round 5:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Ronda 6:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Ronda 7:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Ronda 8:
Muestra o explica cómo sabes que tus fracciones son equivalentes.
Display a number line that shows two fractions that are at the same location, such as and .
“Al principio de la unidad, usamos tiras de fracciones para ver y encontrar fracciones equivalentes. Aquí usamos rectas numéricas para encontrar fracciones equivalentes” // “Earlier in the unit, we used fraction strips to see and find equivalent fractions. Here we use number lines to find equivalent fractions.”
“¿En qué se parecen las dos formas de mostrar fracciones equivalentes?” // “How are the two ways of showing equivalent fractions alike?” (Both involve partitioning a whole and identifying two or more fractions.)
“¿En qué son diferentes?” // “How are they different?” (Instead of looking for parts that are the same size, we are looking for the same point or location on the number line.)
“Hoy vimos que puede ser útil usar una o dos rectas numéricas para mostrar que las fracciones son equivalentes. Tengan eso en mente durante el cierre” // “Today, we saw that it can be helpful to use one or two number lines to show that fractions are equivalent. Keep that in mind during the Cool-down.”