Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Warm-up is to draw students’ attention to the multiplicative relationships between the numerators and denominators of two equivalent fractions. These observations will be helpful later as students use the idea of multiples to generate equivalent fractions.
While students may notice and wonder many things about these equations, highlight observations about a factor relating the numbers in the two sides of each equation.
¿Qué observas? ¿Qué te preguntas?
In an earlier lesson, students used visual representations to generate equivalent fractions. They did so by partitioning each increment on a number line into smaller equal-size parts. In this activity, they connect that action to a numerical process—one that involves multiplying both the numerator and denominator by the same factor. When students notice that they can multiply the numerator and denominator of a fraction by any whole number to get an equivalent fraction, they observe regularity in repeated reasoning (MP8).
A Elena se le ocurrió otra forma de encontrar fracciones equivalentes. Ella escribió:
Analiza el trabajo de Elena. Después, discute estas preguntas con un compañero:
¿Cómo se relacionan las ecuaciones de Elena con las rectas numéricas de Andre?
In this activity, students identify equivalent fractions. In the first problem, they use the numerical strategy they learned earlier to determine if two fractions are equivalent. In the second problem, they can use any strategy in their toolkit—which now includes a numerical method—to identify equivalent fractions.
Students encounter some fractions with unfamiliar denominators, such as 9, 16, 32, 40, and 80, but they will not be assessed on such fractions. These denominators are multiples of familiar denominators such as 2, 3, 4, 5, 8, or 10, and are included to give students opportunities to generalize their reasoning about equivalence.
Examina la estrategia de Elena de la actividad anterior.
¿Su estrategia podría ayudarnos a saber si 2 fracciones son equivalentes? Intenta usarla para comprobar la equivalencia de las siguientes parejas de fracciones. Si son equivalentes, escribe una ecuación que lo muestre.
Encuentra todas las fracciones de la lista que son equivalentes a . Prepárate para explicar o mostrar cómo lo sabes.
“Hoy usamos una estrategia numérica para encontrar fracciones equivalentes y comprobar si las fracciones son equivalentes” // “Today we used a numerical strategy for finding equivalent fractions and for checking if fractions are equivalent.”
“Supongamos que un compañero no estuvo hoy en la clase. Después, vio algunos ejemplos de cómo encontrar fracciones equivalentes a usando esta estrategia, pero no entiende del todo los ejemplos” // “Suppose a classmate was absent today. They later saw some examples of how to find equivalent fractions for using this strategy, but they don’t fully understand the examples.”
Display and .
“¿Qué le dirían a su compañero para ayudarlo a entender lo que está ocurriendo en las ecuaciones? ¿Cómo explicarían la multiplicación por 4 o por 6?” // “What would you say to help your classmate understand what is happening in the equations? How would you explain the multiplication by 4 or by 6?”