Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Number Talk encourages students to think about the distance of a number to a multiple of 100, 1,000, and 10,000 by relying on the structure of numbers in base-ten to mentally find differences (MP7). The understanding elicited here will be helpful later in the lesson when students round multi-digit whole numbers. It may be helpful to record students' reasoning on number lines.
En cada caso, encuentra mentalmente el valor que hace que la ecuación sea verdadera.
In this activity, students connect the idea of “nearest multiple” to rounding. They are reminded that to round to the nearest thousand, ten-thousand, and hundred-thousand is to find the nearest multiples of these values. When they find all of the numbers that round to a given number, students need to think carefully about place value and may choose to use a number line to support their reasoning (MP5).
Noah dice que 489,231 se puede redondear a 500,000.
Priya dice que se puede redondear a 490,000.
Explica o muestra por qué tanto Noah como Priya tienen razón. Si te ayuda, usa una recta numérica.
Nombra otros 2 números que también se puedan redondear tanto a 500,000 como a 490,000.
In this activity, students round numbers to various place values. For the first time, students encounter a number that rounds to one million and some that round to 0. (For example, 4,896, rounded to the nearest hundred-thousand is 0.) Students may wonder why we round a number in the thousands to the nearest hundred-thousand. Make note of such ideas to discuss in the next lesson where students explore rounding in context and see that it often involves giving meaningful information.
Tu profesor te va a mostrar 6 números. Escoge por lo menos 3 números y redondéalos al múltiplo de 100,000, al múltiplo de 10,000, al múltiplo de 1,000 y al múltiplo de 100 más cercanos.
Anota tus resultados en la tabla. Si te ayuda, usa una recta numérica.
| redondea al múltiplo de . . . más cercano |
100,000 | 10,000 | 1,000 | 100 |
|---|---|---|---|---|
| 53,487 | ||||
| 4,896 | ||||
| 370,130 | ||||
| 96,500 | ||||
| 985,411 | ||||
| 7,150 |
Optional
La tabla muestra las poblaciones estimadas de dos ciudades de los Estados Unidos, según datos recolectados en el año 2018.
Estas son otras 3 ciudades y la población estimada de cada una.
La tabla muestra 3 formas de redondear números grandes.
Display the completed table from a previous activity.
| round to the nearest . . . |
100,000 | 10,000 | 1,000 | 100 |
|---|---|---|---|---|
| 53,487 | 100,000 | 50,000 | 53,000 | 53,500 |
| 4,896 | 0 | 0 | 5,000 | 4,900 |
| 370,130 | 400,000 | 370,000 | 370,000 | 371,000 |
| 96,500 | 100,000 | 100,000 | 97,000 | 96,500 |
| 985,411 | 1,000,000 | 990,000 | 985,000 | 985,400 |
| 7,150 | 0 | 10,000 | 7,000 | 7,200 |
“¿Qué observan? ¿Qué se preguntan?” // “What do you notice? What do you wonder?”
“¿Por qué al redondear 370,130 al múltiplo de 10,000 más cercano y al múltiplo de 1,000 más cercano se obtiene el mismo número?” // “Why does 370,130 round to the same number when rounded to the nearest ten-thousand and thousand?” (The nearest multiple of 1,000 and the nearest multiple of 10,000 happen to be the same number—370,000.)
“¿Por qué se obtiene 0 al redondear 4,896?” // “Why does 4,896 round to 0?” (It is closer to 0 than to the next closest multiple of 10,000 or of 100,000. It is more than 5,000 away from 10,000, and more than 50,000 away from 100,000.)
“¿Por qué al redondear 985,411 al múltiplo de 100,000 más cercano se obtiene 1,000,000, y no un número de seis dígitos?” // “Why does 985,411 round to 1,000,000 instead of a six-digit number in the hundred-thousands?” (1,000,000 is its nearest multiple of 100,000.)