Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Encuentra mentalmente el valor de cada expresión.
The purpose of this activity is for students to convert between measurements in milliliters and liters, providing practice multiplying and dividing by 1,000. Students work with numbers in many forms, including whole numbers, decimals, fractions, and numbers in exponential form.
| L | mL |
|---|---|
| 1 | 1,000 |
| 10 | |
| 0.1 | |
| 100,000 | |
| 10 |
| L | mL |
|---|---|
| 1 | 1,000 |
| 10 | 10,000 |
| 0.1 | 100 |
| 100 | 100,000 |
| 0.01 | 10 |
Completa la tabla.
| L | mL |
|---|---|
| 5 | |
| 6.3 | |
| 0.95 | |
| 800,000 | |
| 65 |
En cada caso, decide si las dos medidas son iguales. Si no lo son, escoge la medida que es mayor. Explica o muestra cómo razonaste.
15 mL y 0.15 L
2,500 mL y 2.5 L
200 mL y de L
1 mL y L
If students only use multiplication or division to convert the units in the table, consider asking:
Add rows to the table. “¿Cómo puedes usar la multiplicación para averiguar el número de mililitros que hay en 2 litros de agua? ¿Cómo puedes usar la división para averiguar el número de litros que hay en 1 mililitro de agua?” // “How can you use multiplication to figure out the number of milliliters in 2 liters of water? How can you use division to figure out the number of liters in 1 milliliter of water?”
The purpose of this activity is for students to solve multi-step problems involving metric units of liquid volume (MP2). The given quantities involve fractions. One of the quantities involves the fraction , which students may convert to a decimal, or they may perform the needed arithmetic with fractions. Students also have a choice of converting to milliliters or liters, and there are different points in the calculations when they may choose to make the conversion.
Different approaches students may use to solve the problems include:
The purpose of the Lesson Synthesis is to compare some of these different approaches.
En el grupo artístico hay 25 bailarines. Durante el ensayo, cada bailarín se toma botellas de agua.
“Convertimos litros a mililitros y mililitros a litros, y usamos estas conversiones para resolver problemas. Para esto, multiplicamos o dividimos” // “Today we converted between liters and milliliters and used these conversions to solve problems. We multiplied or divided.”
“Vimos dos formas de resolver el problema del dispensador de agua” // “We saw two ways to solve the water-cooler problem.”
Display student work from the lesson that shows multiplication and division.
“¿Cuál estrategia prefieren? ¿Por qué?” // “Which strategy do you prefer? Why?” (I liked working in milliliters because then I could use whole numbers. I like using liters because I can visualize a liter and that helps me make sense of the calculations.)