Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Here is a graph of \(p\), an insect population, \(w\) weeks after it was first measured. The population grows exponentially.
Here is a graph of the function, \(f\), defined by \(f(x) = a \boldcdot b^x\).
Select all possible values of \(b\).
0
\(\frac{1}{10}\)
\(\frac{1}{2}\)
\(\frac{9}{10}\)
1
1.3
\(\frac{18}{5}\)
The function \(f\) is given by \(f(x) = 50 \boldcdot \left(\frac{1}{2}\right)^x\), and the function \(g\) is given by \(g(x) = 50 \boldcdot \left(\frac{1}{3}\right)^x\).
Here are graphs of \(f\) and \(g\).
Kiran says that since \(3 > 2\), the graph of \(g\) lies above the graph of \(f\) so Graph 1 is the graph of \(g\) and graph 2 is the Graph of \(f\).
Do you agree? Explain your reasoning.
Function \(f\) is defined by \(f(x) = 50 \boldcdot 3^x\). Function \(g\) is defined by \(g(x) = a \boldcdot b^x\).
Here are graphs of \(f\) and \(g\).
Technology required. The equation \(y=600,\!000\boldcdot (1.055)^t\) represents the population of a country \(t\) decades after the year 2000.
Use graphing technology to graph the equation. Then, set the graphing window so that you can simultaneously see points on the graph representing the population predicted by the model in 1980 and in the year 2020. What graphing window did you use?
The dollar value of a car is a function, \(f\), of the number of years, \(t\), since the car was purchased. The function is defined by the equation \(f(t) = 12,\!000 \boldcdot \left(\frac{3}{4}\right)^t\) .
A ball was dropped from a height of 150 cm. The rebound factor of the ball is 0.8. About how high, in centimeters, did the ball go after the third bounce?
77
96
234
293
A triathlon athlete runs at an average rate of 8.2 miles per hour, swims at an average rate of 2.4 miles per hour, and bikes at an average rate of 16.1 miles per hour. At the end of one training session (during which she did not run), she has swum and biked more than 20 miles in total.
Is it possible that she swam and biked for the following amounts of time in that session? Show your reasoning.