Sums and Products of Rational and Irrational Numbers
Algebra 1
21.1
Warm-up
Here are some examples of integers:
-25
-10
-2
-1
0
5
9
40
Experiment with adding any two numbers from the list (or other integers of your choice). Try to find one or more examples of two integers that:
add up to another integer.
add up to a number that is not an integer.
Experiment with multiplying any two numbers from the list (or other integers of your choice). Try to find one or more examples of two integers that:
multiply to make another integer.
multiply to make a number that is not an integer.
21.2
Activity
Here are a few examples of adding two rational numbers. Is each sum a rational number? Be prepared to explain how you know.
is an integer:
Here is a way to explain why the sum of two rational numbers is rational:
Suppose and are fractions. That means that and are integers, and and are not 0.
Find the sum of and . Show your reasoning.
In the sum, are the numerator and the denominator integers? How do you know?
Use your responses to explain why the sum of is a rational number.
Use the same reasoning as in the previous question to explain why the product of two rational numbers, , must be rational.
21.3
Activity
Here is a way to explain why is irrational.
Let be the sum of and , or .
Suppose is rational.
Is rational or irrational? Explain how you know.
Evaluate . Is the sum rational or irrational?
Use your responses to explain why cannot be a rational number, and therefore cannot be rational.
Use a similar reasoning as in the earlier question to explain why is irrational. Here are some assumptions to get you started.
Let be the product of and , or .
Suppose is rational.
21.4
Activity
Consider the equation . Find a value of so that the equation has:
2 rational solutions
2 irrational solutions
1 solution
no solutions
Describe all the values of that produce 2 solutions, 1 solution, and no solutions.
Write a new quadratic equation with each type of solution. Be prepared to explain how you know that your equation has the specified type and number of solutions.
no solutions
2 irrational solutions
2 rational solutions
1 solution
Student Lesson Summary
We know that quadratic equations can have rational solutions or irrational solutions. For example, the solutions to are -3 and 1, which are rational. The solutions to are , which are irrational.
Sometimes solutions to equations combine two numbers by addition or multiplication—for example, and . What kind of numbers are these expressions?
When we add or multiply two rational numbers, is the result rational or irrational?
The sum of two rational numbers is rational. Here is one way to explain why it is true:
Any two rational numbers can be written and , where are integers, and and are not zero.
The sum of and is . The denominator is not zero because neither nor is zero.
Multiplying or adding two integers always gives an integer, so we know that and are all integers.
If the numerator and denominator of are integers, then the number is a fraction, which is rational.
The product of two rational numbers is rational. We can show why in a similar way:
For any two rational numbers and , where are integers, and and are not zero, the product is .
Multiplying two integers always results in an integer, so both and are integers. Therefore, is a rational number.
What about two irrational numbers?
The sum of two irrational numbers could be either rational or irrational. We can show this through examples:
and are both irrational, but their sum is 0, which is rational.
and are both irrational, and their sum is irrational.
The product of two irrational numbers could be either rational or irrational. We can show this through examples:
and are both irrational, but their product is , or 4, which is rational.
and are both irrational, and their product is , which is not a perfect square and is therefore irrational.
What about a rational number and an irrational number?
The sum of a rational number and an irrational number is irrational. To explain why requires a slightly different argument:
Let be a rational number and an irrational number. We want to show that is irrational.
Suppose represents the sum of and (), and suppose is rational.
If is rational, then would also be rational, because the sum of two rational numbers is rational.
is not rational, however, because .
cannot be both rational and irrational, which means that our original assumption that is rational was incorrect. , which is the sum of a rational number and an irrational number, must be irrational.
The product of a nonzero rational number and an irrational number is irrational. We can show why this is true in a similar way:
Let be rational and irrational. We want to show that is irrational.
Suppose is the product of and (), and suppose is rational.
If is rational, then would also be rational because the product of two rational numbers is rational.
is not rational, however, because .
cannot be both rational and irrational, which means our original assumption that is rational was false. , which is the product of a rational number and an irrational number, must be irrational.