Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Here are graphs of functions \(f\) and \(g\). For each, determine the value of \(k\) so that \(g(x)=f(kx)\).
Let \(f(x) = x(x-5)(x+2)(x+5)\). Decide if the reasoning about each of the following functions is correct. Explain your reasoning.
Clare says this graph is a vertical shift of the graph of \(f\) down 100 units.
A bacteria population, in thousands, is modeled by the function \(f(d) = 30 \boldcdot 2^d\), where \(d\) is the number of days since it was first measured. The function \(g\) gives the bacteria population, in thousands, \(w\) weeks after it was first measured. Express \(g\) in terms of \(f\). Explain your reasoning.
The height of a hot air balloon, in feet, \(m\) minutes after takeoff is modeled by the function \(f(m) = 16m\).
Here is the graph of a function \(f\).
Reflecting \(f\) across the \(x\)-axis and then across the vertical line \(y=1\) takes the graph of \(f\) back to itself. Tyler says that this means \(f\) is an odd function. Do you agree with Tyler? Explain your reasoning.
The population of sloths in an area has been increasing by 5% each year since 2000. Let \(P\) model the population \(P(t)\), in thousands, of sloths \(t\) years after the year 2000. The graph of \(p(t) = 1.05^t\) has a general shape that fits the data. Find a scale factor \(k\) so that \(P(t) = kp(t)\) fits the data.
| years (since 2000) | population (in thousands) |
|---|---|
| 5 | 15.7 |
| 8 | 18.2 |
| 10 | 20.0 |
| 12 | 22.1 |
| 15 | 25.6 |
| 19 | 33.1 |