Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Choral Count is to invite students to practice counting by 10 and notice patterns in the count. These understandings help students develop fluency with the count sequence and will be helpful as students begin working with numbers beyond 10.
The purpose of this activity is for students to write equations to match each story problem. Students solve the problems in any way that makes sense to them. They may write an equation in which the total or difference is before the equal sign or that uses the commutative property. Students may write equations with a box around the answer, an empty box for the unknown, or a combination of both. The number choices in this activity intentionally use sums of 10. Look for students who use counting strategies and for who use known facts to solve the problem.
The story problems in this activity are about the Mexican game, Lotería (loh-teh-REE-ah). During the Launch, students learn how the game is played and some similarities between Lotería and Bingo. Before sharing information about the game, ask students if anyone has heard of Lotería and so, what they know about how it is played. Consider showing students pictures of Lotería boards and cards.
The purpose of this activity is for students to make sense of story problems that do not include a question. The structure of the first story makes it likely most students will infer it is an Add To, Change Unknown problem without a question being asked. The actions and transitional words make it very likely all students will ask a question similar to “How many more pictures did Clare cover?” However, the second story begins only by describing two different quantities. This could be the set-up to a Put Together/Take Apart problem or a Compare problem. This gives students an opportunity to make sense of different relationships between quantities and to revisit the different ways of asking to find the difference. When students formulate their own questions, they need to make sense of the given information in order to understand what is given and what is unknown (MP1).
Clare cubre 3 imágenes en su cartón.
Ella cubre algunas más.
Ahora tiene 9 imágenes cubiertas.
¿Qué pregunta puedes hacer sobre la historia?
Resuelve tu problema-historia.
Muestra cómo pensaste. Usa dibujos, números o palabras.
Diego tiene 2 frijoles en su cartón.
Noah tiene 9 frijoles en su cartón.
¿Qué pregunta puedes hacer sobre la historia?
Resuelve tu problema-historia.
Muestra cómo pensaste. Usa dibujos, números o palabras.
Display:
“Hoy resolvimos problemas-historia y escribimos ecuaciones que les correspondían. Escribimos algunas ecuaciones con un sumando desconocido. ¿Cómo podrían encontrar el valor desconocido en esta ecuación?” // “Today we solved story problems and wrote equations to match them. We wrote some equations with an unknown addend. How could you find the unknown value in this equation?” (I could count on from 3 until I got to 10. I could subtract .)
Se han dicho 10 nombres de las tarjetas de imágenes.
7 de las imágenes están en el cartón de Mai.
¿Cuántas imágenes no están en el cartón de Mai?
Muestra cómo pensaste. Usa dibujos, números o palabras.
Ecuación: __________________________
Ecuación: __________________________
Lin tiene 10 frijoles para jugar.
2 de sus frijoles caen al piso.
¿Cuántos frijoles tiene ahora Lin para jugar?
Muestra cómo pensaste. Usa dibujos, números o palabras.
Ecuación: ________________________________
Ecuación: ________________________________
Noah tiene 4 imágenes cubiertas en su cartón.
Su hermano tiene 10 imágenes cubiertas.
¿Cuántas imágenes menos que su hermano tiene cubiertas Noah?
Muestra cómo pensaste. Usa dibujos, números o palabras.
Ecuación: ________________________________
Ecuación: ________________________________