Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Number Talk is to elicit strategies and understandings students have for subtracting within 100. It also provides an opportunity to observe student strategies as they work toward becoming fluent in addition within 1,000.
When students use strategies based on place value to subtract, they look for and make use of structure (MP7).
Encuentra mentalmente el valor de cada expresión.
The purpose of this activity is to introduce the commutative property. Students write array situations for a pair of arrays and discuss similarities and differences. While the situations will have the same total number of objects, how the objects are grouped should be different. Then students write equations to go with the arrays and situations, and make connections between the representations (MP2). Students notice that, while the order of the factors in the multiplication equation changes, the product does not change (MP7).
¿Qué observas? ¿Qué te preguntas?
Imagen A
Imagen B
Para cada arreglo, escribe una situación que le corresponda.
Imagen A
Imagen B
¿En qué se parecen las situaciones? ¿En qué son diferentes?
Escribe una ecuación de multiplicación para cada situación.
Imagen A
Imagen B
¿Cómo se conecta tu ecuación con la situación y con el arreglo?
Imagen A
Imagen B
The purpose of this activity is to reinforce the idea of the commutative property. In this activity, students write two equations to match an array to show again that reversing the order of the factors does not change the product. If students do not immediately see how they might write different equations for the array, encourage them to consider different ways of grouping the dots in the array, similar to the previous activity. Students use the vocabulary they have learned for describing arrays and multiplication to explain why both equations match an array with their partner. The Stronger and Clearer Each Time math language routine allows students to receive feedback and revise their explanation for clarity (MP3, MP6).
If students finish early, consider drawing another array. Have students write two equations for the array and consider how they can think of the rows or columns as equal groups.
This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writing.
Escribe 2 ecuaciones de multiplicación que representen el arreglo.
MLR1 Stronger and Clearer Each Time
Display a 3 by 4 array and the equations and .
“¿Qué aprendimos hoy cuando pensamos en arreglos y vimos parejas de ecuaciones como esta?” // “What did we learn from thinking about arrays and seeing pairs of equations like this today?” (The order of the factors does not change the product or the total number of objects in the array or situation. Connecting the numbers in your equations to arrays and situations helps clarify what each number means.)
Display .
“Como y , podemos escribir ” // “Since and , we can write .“
“La idea de que podemos multiplicar dos números en cualquier orden y obtener el mismo producto se llama la propiedad conmutativa” // “The idea that we can multiply two numbers in any order and get the same product is called the commutative property.”
Aprendimos cómo se relacionan los grupos iguales con los arreglos y cómo representar arreglos con expresiones y ecuaciones de multiplicación.
Grupos iguales:
Arreglo:
Expresión:
Ecuación:
También aprendimos que podemos multiplicar los números en cualquier orden y obtener el mismo producto.