Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
En cada caso, decide si la afirmación es verdadera o falsa. Explica tu razonamiento.
Card Sort Diagrams of Fractions and Decimals
In this activity, students reinforce their understanding of equivalent fractions and decimals by sorting a set of cards by their value. This sorting task gives students opportunities to analyze fractions, decimals, and diagrams closely and make connections (MP7).
Tu profesor te va a dar varias tarjetas. El cuadrado grande de cada tarjeta representa 1.
¿Son 0.20 y 0.2 equivalentes? Usa fracciones y un diagrama para explicar tu razonamiento.
In this activity, students apply their understanding of equivalent fractions and decimals more formally, by analyzing equations and correcting the ones that are false. The last question refers to decimals on a number line and sets the stage for the next lesson where the primary representation is the number line.
As students discuss and justify their decisions about the claim in the last question, they critically analyze student reasoning (MP3).
This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writingEn cada caso, decide si la afirmación es verdadera o falsa. Si es falsa, reemplaza uno de los números para que sea verdadera. Los números que hay a cada lado del signo igual no pueden ser idénticos.
Jada dice que si se ubican los números 0.05, 0.5 y 0.50 en la recta numérica, solo quedarían 2 puntos marcados. ¿Estás de acuerdo? Explica o muestra tu razonamiento.
“Hoy exploramos distintas formas de representar decimales que son equivalentes. Usamos cuadrículas, rectas numéricas y fracciones para mostrar que dos decimales pueden representar el mismo valor” // “Today we looked at different ways to represent decimals that are equivalent. We used square grids, number lines, and fractions to show that two decimals can represent the same value.”
“Supongan que un compañero no vino a la clase de hoy. ¿Cómo podrían convencerlo de que 0.3 y 0.30 son equivalentes? Escriban por lo menos dos maneras distintas de hacerlo” // “Suppose a classmate is absent today. How would you convince them that 0.3 and 0.30 are equivalent? Write down at least two different ways.”
Select students to share their thinking.
Display the representations they used, or draw and display the following:
As needed, summarize student thinking for each representation. For example:
“0.3 es y 0.30 es . Las dos fracciones son equivalentes” // “0.3 is and 0.30 is . The two fractions are equivalent.”