The purpose of this Estimation Exploration is to practice the skill of making a reasonable estimate for a number based on its location on a number line. Students give a range of reasonable answers when given incomplete information. They have the opportunity to revise their thinking as additional information is provided. The Activity Synthesis should focus on discussing what other benchmarks (multiples of 10) would help make a better estimate. The actual number is revealed in the Launch of the first activity.
This Estimation Exploration encourages students to use what they know about place value to determine the value of the two tick marks the point lies between and then reason about where it is located (MP7).
“¿Qué número está representado por el punto?” // “What number is represented by the point?”
“¿Qué estimación sería muy alta?, ¿muy baja?, ¿razonable?” // “What is an estimate that’s too high? Too low? About right?”
1 minute: quiet think time
1 minute: partner discussion
Record responses in the table.
Activity
“Discutan con su compañero cómo pensaron” // “Discuss your thinking with your partner.”
1 minute: partner discussion
Record responses.
¿Qué número está representado por el punto?
Escribe una estimación que sea:
muy baja
razonable
muy alta
Student Response
Loading...
Advancing Student Thinking
Activity Synthesis
“¿Qué información les ayudaría a hacer una estimación más precisa?” // “What information would help you make a more precise estimate?” (Additional tick marks or other numbers around the point)
Consider providing new information. “¿Les gustaría ajustar sus estimaciones?” // “Would you like to revise your estimates?”
Record new or revised estimates.
“¿Cómo les ayudaron los números adicionales a ajustar sus estimaciones?” // “How did the additional numbers help you revise your estimate?”
“¿Qué otra información necesitarían para estar más seguros de su estimación?” // “What other information would you need to be more confident with your estimate?”
Activity 1
Standards Alignment
Building On
Addressing
4.NBT.A.1
Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that by applying concepts of place value and division.
The purpose of this activity is for students to use their understanding of place value and the relative position of numbers within 1,000,000 to partition and place numbers on a number line. Students place four related numbers on a number line and consider relationships between digits to determine how to partition a number line.
The numbers have the same non-zero digits but with different place values, allowing students to observe the closely related values of the tick marks (MP7) and the identical location on the different number lines of the numbers they plot (MP8).
Launch
Groups of 2
“¿Qué observan y qué se preguntan acerca de las primeras cuatro rectas numéricas?” // “What do you notice and wonder about the first four number lines?”
30 seconds: quiet think time
30 seconds: partner discussion
“Piensen en qué lugar de la recta numérica ubicarían el primer número” // “Think about where you would place the first number on the number line.”
“Explíquenle a un compañero cómo decidieron en dónde ubicar el número” // “Explain to a partner how you decided where to place the number.”
Activity
10 minutes: independent work time
3 minutes: partner discussion
Monitor for students who:
Add tick marks to show the halfway mark, and the labeled number slightly less than half on each number line in the first problem.
Label the seventh tick mark on each number line for the second problem.
Ubica y marca cada número en la recta numérica.
347
3,470
34,700
347,000
Ubica y marca cada número en la recta numérica.
347
3,470
34,700
347,000
¿Qué observas acerca de la ubicación de estos números en las rectas numéricas? Haz 2 observaciones y discútelas con tu compañero.
Student Response
Loading...
Advancing Student Thinking
If students place the numbers in the first problem on the number line without marking or labeling any tick marks, consider asking:
“¿Cómo decidiste dónde ubicar el ___ en la recta numérica?” // “How did you decide where to place ____ on the number line?”
“¿Cómo puede ayudarte partir la recta numérica en partes iguales a ubicar y marcar los números en la recta numérica?” // “How can splitting the number line into equal parts help you to locate and label numbers on the number line?”
Activity Synthesis
Ask 2–3 students to share their responses and their reasoning for each problem.
“¿Cómo partieron la recta numérica del primer problema?” // “How did you partition the number line in the first problem?” (I know that 350 is halfway between 300 and 400, so I marked the halfway point, and then estimated where 3 down from that would be.)
“¿Cómo les ayudan las rectas numéricas a ver las relaciones que hay entre los números?” // “How do the number lines help you to see the relationship between the numbers?” (The number lines have endpoints that are ten times as much as the number line before. Also, each number is ten times as much as the number before. The place values changed, but the numbers are located in the same relative position.)
Activity 2
Standards Alignment
Building On
Addressing
4.NBT.A.1
Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that by applying concepts of place value and division.
In this activity, students place a set of numbers that are each ten times as much as the one before it on the same number line. In doing so, they notice the impact of multiplying a number by ten on its magnitude. Unlike before, the number lines have no or fewer intermediate tick marks, prompting students to think about how to partition the lines in order to plot their assigned number.
MLR8 Discussion Supports. Synthesis: At the appropriate time, give students 2–3 minutes to make sure that everyone in their group can explain their approach to the problem. Invite groups to rehearse what they will say when they share with the whole class. Advances: Speaking, Conversing, Representing
Representation: Access for Perception. Begin by demonstrating the relative magnitude of numbers in the hundreds, thousands, ten-thousands, and hundred-thousands using millimeters. Invite students to examine a meter stick and notice the size of one millimeter, ten millimeters, one hundred millimeters, and one thousand millimeters. Prompt students to guess the length of ten-thousand and one hundred-thousand millimeters. If time and space allow, prepare a walk outside the classroom with stops at 10,000 millimeters from the door and 100,000 millimeters from the door. Supports accessibility for: Conceptual Processing, Visual Spatial Processing, Attention
Launch
Groups of 4
Assign each student in a group a letter A–D.
Activity
“En silencio, piensen unos minutos en qué lugar de la recta numérica debería ir el número que se les asignó” // “Take a few quiet minutes to think about where your assigned number should go on the number line.”
“Luego, discutan en grupo cómo pensaron y, juntos, ubiquen los cuatro números en la recta numérica” // “Then discuss your thinking with your group and work together to locate all four numbers on the number line.”
3–4 minutes: independent work time
7–8 minutes: group work time
Monitor for students who:
Partition the number line into hundred-thousands or ten-thousands.
Use benchmarks such as 50,000, 200,000, or 350,000.
Su profesor le va a asignar un número a cada uno para que lo ubiquen en la recta numérica dada.
347
3,470
34,700
347,000
Decidan dónde ubicar cada número en esta recta numérica. Expliquen su razonamiento.
En grupo, escriban debajo de cada marca el número que representa. Después, decidan juntos dónde deben ubicar cada número.
Student Response
Activity Synthesis
Ask 2–3 small groups to share their number line.
Ask questions about structure:
“¿De qué manera decidieron partir la recta numérica?” // “How did you decide to partition the number line?” (I partitioned the number line by tens, hundreds, thousands, ten-thousands, hundred-thousands—not by ones.)
Ask questions about precision:
“¿Cuáles números fueron más fáciles de ubicar? ¿Por qué?” // “Which numbers were easier to locate? Why?” (34,700 and 347,000, were easier to locate because they were further away from zero.)
“¿Qué hubiera ayudado a ubicar los demás números más fácilmente?” // “What would have made it easier to locate the other numbers?” (A longer number line would have made it easier to include more partitions)
Ask questions about magnitude:
“Hagan algunas observaciones acerca de dónde están ubicados los números en la recta numérica” // “Make some observations about where the numbers are positioned on the number line.” (Most of the numbers are much closer to zero than to 400,000)
“Aquí ubicaron los mismos cuatro números que habían ubicado en la primera actividad. ¿Qué diferencias hay entre esta ubicación de los puntos y la ubicación de los puntos de la primera actividad?” // “You located the same four numbers here as you did in the first activity. How are the locations of the points different from those in the first activity?” (Ten times as much looks different when they are all on the same number line.)
Lesson Synthesis
“Hoy ubicamos y analizamos conjuntos de números grandes en una recta numérica. En cada conjunto, cada número era 10 veces el número que estaba antes de él. Observemos las rectas numéricas de la primera actividad” // “Today we located and analyzed sets of large numbers on a number line. In each set, each number was 10 times as much as the number before it. Let’s look at the number lines from the first activity.”
“¿Cómo podemos usar ecuaciones de multiplicación para mostrar la relación que hay entre los puntos que están en la recta numérica?” // “How might we use multiplication equations to show the relationship between each point on the number line?”(, , )
“¿Cuál es la relación que hay entre los valores de las marcas en cada recta numérica?” // “What is the relationship between the values of the labels on each number line?” (Each new number line has tick marks that are valued at 10 times as much as the labels on the previous number line.)
Student Section Summary
Trabajamos con números hasta 999,999, es decir, que van hasta la posición de las unidades de cien mil.
Primero, usamos bloques en base diez, cuadrículas de 10 por 10 y diagramas en base diez para nombrar, escribir y representar números de varios dígitos (menores que 1,000,000). Escribimos los números en forma desarrollada para poder ver el valor de cada dígito. Ejemplo:
Luego, aprendimos que el valor de un dígito de un número de varios dígitos es diez veces el valor del mismo dígito en la posición que está a su derecha. Ejemplo:
14,800 y 148,000 tienen un 4.
El 4 en 14,800 está en la posición de las unidades de mil. Su valor es 4,000.
El 4 en 148,000 está en la posición de las unidades de diez mil. Su valor es 40,000.
El valor del 4 en 148,000 es diez veces el valor del 4 en 14,800.
Usamos ecuaciones de multiplicación y de división para representar esta relación.
Por último, analizamos la relación “diez veces” ubicando números en rectas numéricas.
Standards Alignment
Building On
Addressing
Building Toward
4.NBT.A.2
Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using , =, and symbols to record the results of comparisons.
Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using , =, and symbols to record the results of comparisons.
Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using , =, and symbols to record the results of comparisons.