Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to carefully analyze and compare length measurements given in different units, reminding about the relationships between yards, feet, and inches. In making comparisons, students need to attend to both the meaning of each unit and its relationships to other units, and they have a reason to use language precisely (MP6). The activity also enables the teacher to hear the terminology students use to talk about the characteristics of length measurements given in different units.
¿Cuáles 3 van juntas?
A
3 pies
B
yardas
C
pulgadas
D
yarda
In this activity, students analyze length measurements, perform multiplication, and convert distances from yards to feet in order to compare and order them. The quantities in yards involve only whole numbers while those feet involve fractional amounts, to encourage students to convert from the larger unit to the smaller one.
En el día de juegos al aire libre, 6 estudiantes lanzan discos. Esta tabla muestra información sobre el primer lanzamiento de cada uno.
| estudiante | distancia |
|---|---|
| Han | 17 yardas |
| Lin | pies |
| Clare | pies |
| Andre | 22 yardas y 2 pies |
| Elena | |
| Tyler |
El disco de Elena llegó 3 veces tan lejos como el disco de Clare.
El disco de Andre llegó 4 veces tan lejos como el disco de Tyler.
Completa la tabla con las distancias de Elena y de Tyler. Explica o muestra cómo razonaste.
¿Quiénes fueron los 3 mejores lanzadores en esa ronda?
Para averiguarlo, haz una lista de los estudiantes. Ordénalos según sus distancias en pies, de la más larga a la más corta.
In this activity, students apply their knowledge of multiplicative comparison and ability to convert feet and inches to solve a logic puzzle. They use several given clues to determine the heights of four objects. As they use the clues to reason about the heights of the towers and who built them, students reason abstractly and quantitatively (MP2).
This activity uses MLR5 Co-craft Questions. Advances: writing, reading, representing.
MLR5 Co-craft Questions
Mientras estaban en una excursión, un grupo de amigos hizo un concurso de apilar piedras para ver quién podía construir la torre más alta.
¿Qué tan alta es la torre de cada persona?
| persona | altura de la torre (pulgadas) |
|---|---|
| Andre | |
| Tyler | |
| Clare | |
| Diego |
Invite students to share how they reasoned about the height of each stone tower. Ask others if they reached the same conclusions but reasoned differently, or if they reached different conclusions.
“Una pista dice que la torre de Tyler es 5 veces tan alta como la torre más baja. Sabemos que la torre de Tyler mide 4 pies y 2 pulgadas. ¿Es más fácil encontrar la altura de la torre más baja usando 4 pies y 2 pulgadas o usando 50 pulgadas? ¿Por qué?” // “One clue says that Tyler’s tower is 5 times as tall as the shortest tower. We know that Tyler’s tower is 4 feet 2 inches. Is it easier to find the height of the shortest tower using 4 feet 2 inches or using 50 inches? Why?” (The first uses two different units, so we’d have to divide 4 feet by 5 and 2 inches by 5, or think about what number multiplied by 5 gives 4 and 2. If we use inches, we’re dealing with one number that is clearly a multiple of 5.)
“¿Cómo decidieron si la torre de Elena es más alta o más baja que 6 pies? ¿Convirtieron los 6 pies a pulgadas, convirtieron la altura de la torre de Diego a pies o hicieron otra cosa?” // “How did you decide whether Elena’s tower is greater than 6 feet? Did you convert the 6 feet into inches, convert Diego’s tower into feet, or do something else?”
Record strategies. Highlight that while it is often helpful to express a larger unit in terms of a small unit, some problems can be reasoned without doing so.