Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Number Talk is to elicit strategies and understandings students have for division using partial quotients. These understandings help students develop fluency and will be helpful later in this lesson when they interpret algorithm notation that shows partial quotients.
Encuentra mentalmente el valor de cada expresión.
The purpose of this activity is for students to develop an understanding of the vertical method of recording partial quotients and use it to divide. In the Launch, students look at an algorithm that uses partial quotients and annotate it to show the multiplication that takes place. Then students find the value of several division expressions.
Jada usa cocientes parciales para averiguar cuántos grupos de 7 hay en 392.
Analiza los pasos del algoritmo de cocientes parciales de Jada.
Muestra otra forma de descomponer 392 para dividirlo entre 7.
The purpose of this activity is for students to apply their understanding of partial quotients and the vertical recording method to divide four-digit numbers. They also identify some errors that are common when finding quotients this way. When students determine where the errors are and correct them, they critique the reasoning of others and construct viable arguments (MP3).
Andre y Elena dividen 2,315 entre 5. Antes de comenzar, Andre dice: “Ya sé que el cociente va a ser menor que 500”.
Estos son el trabajo de Andre y el trabajo de Elena. Cada estudiante cometió uno o más errores. Identifica los errores de cada estudiante. Después, muestra una forma correcta de hacer el cálculo.
El trabajo de Andre
El trabajo de Elena
Optional
Estos son 4 cálculos que se hicieron para encontrar el valor de , pero todos están incompletos.
Completa al menos 2 de los cálculos incompletos.
A
B
C
D
“Hoy vimos distintas formas de dividir números de varios dígitos entre divisores de un dígito. Vimos que estimar es una manera muy eficiente de encontrar un cociente. ¿Cómo podríamos usar una estimación para encontrar el valor de o de ?” // “Today we looked at different ways to divide multi-digit numbers by one-digit divisors. We saw estimating as a rather efficient way to find a quotient. How might we use estimation to find or ?” (For , notice that is 30 less than , which is . Thirty is , so is . For , notice that is close to , which is , and is 14 or less than . So is .)
“¿Cómo podemos revisar el resultado de nuestra división para asegurarnos de que es correcto?” // “How can we check the result of our division to make sure it’s not off?” (We can multiply the result by the divisor, adding the remainder if there is one, and see if it gives the dividend.)