Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to carefully analyze and compare quadrilaterals and their sides. When students make comparisons, they have a reason to use geometric language precisely (MP6). The activity also enables the teacher to hear the terminology students use to talk about the characteristics of two-dimensional figures. The knowledge and ideas that students show here also may be insightful to teachers in the next lesson, when students learn about angles.
¿Cuáles 3 van juntos?
In this activity, students practice identifying line segments, intersecting lines, and parallel lines. Students find these figures first on a map and then in the alphabet. In both contexts, they encounter marks that may appear to be segments but are not actually perfectly straight, or pairs of lines that appear to be parallel but are not exactly so. Students have an opportunity to attend to precision when analyzing the given images (MP6).
When analyzing some letters in the alphabet, students may say that J and O have lines or segments that turn. Remind students that we have defined a line as being straight, so a line segment is also straight. In the letter J, the segment can be distinguished from the curve.
Este es un mapa de un vecindario en Staten Island, Nueva York.
Encuentra cada uno de estos elementos en el mapa y márcalos.
(Puedes usar colores diferentes para marcar los distintos tipos de rectas).
En las palabras WHALE (ballena, en español) y JOY (alegría, en español), encuentra la letra o las letras a las que le corresponde cada descripción.
No tiene segmentos paralelos. _________________________
Tiene exactamente un par de segmentos paralelos. _________________________
Tiene más de un par de segmentos paralelos. _________________________
Solo tiene un segmento. _________________________
Si te queda tiempo: ¿Qué se usa más en el alfabeto en mayúsculas: segmentos paralelos o segmentos que se intersecan?
In this activity, students look for parallel and intersecting lines in their environment and record them in a drawing. Students notice that parallel and intersecting segments can be found in logos and symbols, and use these figures to design their own logo. When students recognize mathematical features of objects in their classroom and design a logo with intersecting and parallel line segments, they model with mathematics (MP4).
If time permits, ask students to display their drawings and logos, and complete a Gallery Walk.
Usa cada una de estas descripciones para dibujar un bosquejo de una parte de tu salón.
Intercambia tu bosquejo con el de un compañero. Encuentra los segmentos de recta descritos en cada descripción.
Estos son algunos símbolos y logos que puede que reconozcas. Todos ellos tienen segmentos de recta que se intersecan y segmentos paralelos.
Diseña un logo que tenga al menos 8 segmentos paralelos y 8 segmentos de recta que se intersequen.
Usa una regla para hacer las partes rectas de tu logo.
“Hoy vimos varios ejemplos de rectas paralelas y rectas que se intersecan y de segmentos de recta” // “Today we saw various examples of parallel and intersecting lines and line segments.”
Display:
“¿En qué parte de la imagen ven rectas paralelas?” // “Where do you see parallel lines in the images?” (The left and right sides of the ladder. The outside rails in the drawing of the train track.)
“¿Cuál es la diferencia entre las rectas que ven en las fotos de la vía y en el dibujo de la vía?” // “What’s the difference between the lines you see in the photos of the track and the drawing of the track?” (The horizontal lines look parallel in both. The vertical lines of the track do not look parallel in the photo, but do look parallel in the drawing.)
“¿Por qué piensan que hay una diferencia?” // “Why do you think there’s a difference?” (Maybe some things in the real-world look parallel, but are not really parallel. I think it depends on how you look at it. If we looked at the track from above, maybe the lines would look parallel. When you draw things, you might make some lines parallel to make it look nicer or simpler.)
“Hoy, cuando estaban haciendo su bosquejo o su logo, ¿cómo se aseguraron de que los segmentos que tenían que ser paralelos fueran realmente paralelos?” // “When you were creating your sketch or logo today, how did you make sure that the segments that need to be parallel are actually parallel?” (I measured the distance between them, I used a ruler or another rectangular object as a guide.)
“Tómense 1 o 2 minutos para agregar a su muro de palabras las palabras nuevas de la lección de hoy. Compartan sus palabras nuevas con un compañero y agreguen las nuevas ideas que surjan de su conversación” // “Take 1–2 minutes to add any new words from today’s lesson to your word wall. Share your new entries with a neighbor and add any new ideas you learn from your conversation.”
If students identify segments that meet at a point, but do not cross, as parallel or not intersecting, consider asking: