Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to carefully analyze and compare geometric features of four clock faces. Students may compare the times being represented, but because no numbers are shown, they likely will compare the hands of the clocks and the angles they form.
In making comparisons, students have a reason to use language precisely (MP6). Teachers have a chance to hear the terminology students use to talk about the characteristics of angles.
¿Cuáles 3 van juntos?
In an earlier lesson, students had folded paper and used supplemental tools to form and draw some benchmark angles (, , , and so on). In this activity, they apply their ability to measure and draw angles, with a protractor, to create a reasonably accurate clock face. The measuring and drawing here prepare students to reason about the angles formed by the hands of a clock in the next activity.
Students may notice that lines that give the positions of 1 and 2 on the clock can be extended through the center of the clock to give the positions of 7 and 8, respectively. Students, who use these observations to create the drawing, practice making use of structure (MP7).
The clock that students draw in this activity can be a helpful reference in the next activity.
Kiran dibuja un reloj. Él dibuja un par de rectas perpendiculares para encontrar la ubicación de los números 3, 6, 9 y 12 alrededor del círculo.
Ayuda a Kiran a encontrar la ubicación exacta de los números “1” y “2” en el reloj.
In grade 3, students learned to tell and write time to the nearest minute and to measure time intervals in minutes. They understand that moving from one number on the clock to the next means 5 minutes have elapsed. In this activity, students build on those understandings to solve problems about angles formed by the hands of a clock.
Many students would benefit from having a visual reference of a clock as they are solving these problems. Encourage them to use their clock drawing from the previous activity for support.
Some students may try to answer the questions by drawing each indicated time and then measuring the angles formed by the hands. Ask them to consider finding the size of the angles by reasoning, without measuring. For example, ask: “¿Qué saben sobre el ángulo que se forma cuando una manecilla va del 12 al 3?, ¿del 12 al 1?” // “What do you know about the angle that is formed when a hand goes from 12 to 3? From 12 to 1?” This encourages students to use the structure of the clock and the equal parts into which the numbers divide the clock face (MP7).
This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writing.
MLR1 Stronger and Clearer Each Time
La manecilla de las horas y la manecilla de los minutos forman un ángulo en cada una de estas horas. ¿Cuántos grados mide cada ángulo?
6 en punto
8 en punto
9 en punto
11 en punto
12 en punto
¿Y cuántos grados gira cuando se mueve desde las 2:05 hasta las 2:30? Explica cómo lo sabes.
Descifra cuántos grados gira la manecilla de los minutos durante:
“Hoy aprendimos acerca de las medidas de algunos ángulos que están en un reloj. Miramos ángulos que están formados por las dos manecillas y también pensamos en el número de grados que gira la manecilla de los minutos cuando pasa el tiempo” // “Today we learned about angle measurements on a clock. We looked at the angles formed by the two hands, and we also thought about the number of degrees that a minute hand turns over time.”
“Para encontrar el tamaño de un ángulo que está en un reloj ¿es más útil pensar en términos del número de minutos, del número de grupos de 5 minutos o de los números del 1 al 12?” // “Which is more useful for finding the size of angle on a clock: thinking in terms of the number of minutes, the number of 5 minutes, or the numbers 1–12?” (It depends on the situation.)
Display the following images of clocks:
“¿Cada minuto, la manecilla de los minutos de un reloj cuadrado o de un reloj ovalado gira el mismo número de grados que gira la manecilla de un reloj redondo? Expliquen o muestren cómo lo saben” // “Does the minute hand on a square clock or an oval clock turn the same number of degrees every minute as it does on a round clock? Explain or show how you know.” (Yes. The minute hand still travels a full turn or , in an hour, or 60 minutes, so each minute it still travels , regardless of the outer shape of the clock or how far away the numbers are from the center point.)
Consider displaying an image of the oval clock showing 12 equal angles. Reinforce the idea that the size of an angle is not determined by the lengths of the segments of the rays that form the angle.
“Tómense 1 o 2 minutos para agregar a su muro de palabras las palabras nuevas de las últimas dos lecciones. Compartan sus palabras nuevas con un compañero y agreguen las nuevas ideas que surjan de su conversación” // “Take 1–2 minutes to add the new words from the past two lessons to your word wall. Share your new entries with a neighbor, and add any new ideas you learn from your conversation.”