Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Number Talk encourages students to use multiplicative reasoning and to rely on properties of operations to mentally find the value of products of a whole number and a fraction. The reasoning elicited here will be helpful later in the lesson when students find the perimeter of a figure with fractional side lengths.
Encuentra mentalmente el valor de cada expresión.
In this activity, students find the perimeter of several shapes and write expressions that show their reasoning. Each side of the shape is labeled with its length, prompting students to notice repetition in some of the numbers. The perimeter of all shapes can be found by addition, but students may notice that it is efficient to reason multiplicatively rather than additively (MP8). For example, they may write instead of .
Encuentra el perímetro de cada figura. Escribe una expresión que muestre cómo encontraste el perímetro.
In the previous activity, students found the perimeter of polygons when all the side lengths were given. In this activity, only some of the sides are labeled with their length, but students are given some information about the attributes of the shapes (presence or absence of parallel sides and symmetry). Students use that information to determine the length of the unlabeled sides and the perimeter. They may also conclude that the length of the perimeter cannot be determined.
When students interpret and analyze Mai's and Andre's reasoning about the quadrilateral perimeters, they critique the reasoning of others (MP3).
This activity uses MLR3 Critique, Correct, Clarify. Advances: reading, writing, representing
Estos son 4 cuadriláteros y lo que sabemos sobre ellos:
Mai dice: “No podemos encontrar el perímetro de ninguna de las figuras porque estas tienen longitudes de lado sin marcar”.
Andre está en desacuerdo. Él dice: “Podemos encontrar los perímetros de C y D, pero no los de A y B”.
Select 1–2 groups to read their revised draft aloud slowly enough to record for all to see. Scribe as each group shares, then invite the whole class to contribute additional language and edits to make the final draft even more clear and more convincing.
Optional
This optional activity gives students an additional opportunity to use the attributes and their emerging understanding of the properties of some categories of figures to find their perimeter, or to conclude that the perimeter cannot be determined.
Estas son 5 figuras y lo que sabemos sobre ellas.
Estas son 4 expresiones. Cada una representa el perímetro de una de las figuras. En cada expresión, el y el representan longitudes de lado. ¿A cuál figura corresponde cada expresión?
“Hoy encontramos el perímetro de figuras planas. Algunas veces los lados estaban marcados con sus longitudes. Otras veces no” // “Today we found the perimeter of flat figures. Sometimes the sides were labeled with their lengths. Other times they were not.“
“¿Están de acuerdo con las siguientes afirmaciones? Encuentren una imagen de la lección de hoy que apoye su respuesta” // “Do you agree with the following statements? Find an image from today’s lesson that supports your answer.”
Display and read, one at a time:
“Si una figura es simétrica con respecto a una línea, algunas veces podemos saber las longitudes de los segmentos aunque no todos los segmentos estén marcados” // “If a figure has line symmetry, we can sometimes tell the lengths of the segments even when not all segments are labeled.”
(Agree. If the lengths of the segments on one side of the line of symmetry are known, we can tell the lengths on the other side. See Figure D in the second activity and Figures X, Y, and Z in the third activity.)
“Si una figura no es simétrica con respecto a una línea, no podemos saber cuáles son las longitudes de los segmentos que no estén marcados” // “If a figure shows no line symmetry, we can’t tell the lengths of unlabeled segments.”
(Disagree. Sometimes we can tell. For example, a parallelogram has no line symmetry, but we know their opposite sides are the same length. See Parallelogram C in the second activity and Parallelogram W in the third activity.)