Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to carefully analyze and compare attributes of two-dimensional figures with attention to the number of sides, symmetry, and presence of parallel and perpendicular lines. In making comparisons, students have a reason to use language precisely (MP6). The activity enables the teacher to observe the attributes that students notice intuitively and hear the terminologies they feel comfortable using.
¿Cuáles 3 van juntas?
Before and After Shapes
In this activity, students are given the result of folding a figure along one or more lines of symmetry and they are asked to reason about the original figure. No lines of symmetry are specified, so students must consider all sides of a folded figure as a possible line of symmetry and visualize the missing half accordingly.
The first question offers opportunities to practice choosing tools strategically (MP5). Some students may wish to trace the half-figures on patty paper, to make cutouts of them, or to use other tools or techniques to reason about the original figure. Provide access to the materials and tools they might need.
During the Activity Synthesis, discuss the different ways students approach the second question. Consider preparing cutouts of Figures A–F to facilitate the discussion. (The figures are provided in the blackline master.)
Mai tiene una hoja de papel. Ella puede obtener cada una de estas 2 figuras al doblar la hoja una vez a lo largo de una línea de simetría. ¿Qué forma tiene la hoja de papel sin doblar?
Diego dobló una hoja de papel una vez a lo largo de una línea de simetría y obtuvo este triángulo rectángulo.
¿Qué formas pudo tener la hoja de papel antes de ser doblada? Explica o muestra cómo razonaste.
Previously, students reason about line-symmetric figures that have been folded once along a line of symmetry. In this activity, students encounter figures that have been folded more than once, each time along a line of symmetry, and reason about the perimeter of the original figure. They think about how a given set of expressions could represent the original perimeter of a twice-folded figure, looking for and making use of structure (MP7).
Jada dobló una hoja de papel a lo largo de una línea de simetría y obtuvo este rectángulo.
Kiran dobló otra hoja de papel dos veces, cada vez a lo largo de una línea de simetría. Al doblar la hoja, Kiran obtuvo el mismo rectángulo que Jada.
Muestra que cada expresión podría representar el perímetro de la hoja de Kiran antes de ser doblada.
“Hoy practicamos cómo visualizar figuras que han sido dobladas a lo largo de una línea de simetría y razonamos sobre el perímetro de las figuras originales” // “Today we practiced visualizing shapes that have been folded along a line of symmetry and reasoning about the perimeter of the original shapes.“
Display:
“Supongamos que este triángulo rectángulo fue el resultado de doblar una figura una vez a lo largo de una línea de simetría. ¿Qué estrategias podemos usar para decidir qué figuras posibles se tenían antes de doblar?” // “Suppose this right triangle is a result of folding once along a line of symmetry. What strategies could we use to determine the possible shapes before they were folded?” (Reflect the triangle along each of the sides—mentally, using tracing paper, or cutting out two copies of the triangle and arranging them so they mirror each other.)
“Para encontrar el perímetro de la figura original, ¿podemos simplemente duplicar el perímetro de la figura doblada? ¿Por qué sí o por qué no?” // “To find the perimeter of the original shape, could we just double the perimeter of the folded shape? Why or why not?” (No, because there is one side—along the folding line—that is not part of the perimeter of the original shape.)
“¿Cuáles podrían ser los perímetros de las figuras originales que se doblaron para obtener este triángulo?” // “What could be the perimeters of the original shapes that fold into this triangle?” (If folded along the longest side: it will be 28, or . If folded along the side that is 8 units long, it will be 32, or . If folded along the shortest side, it will be 36, or .)