Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
Encuentra mentalmente el valor de cada expresión.
The purpose of this activity is for students to find the area of a rectangle with a whole number side length and a side length that is a mixed number. Students draw diagrams to represent the area of the gardens in the problem. Students should draw diagrams and find the area in a way that makes sense to them. As students work, ask them to explain their strategy for finding the area. In the Activity Synthesis, students consider multiplication expressions that use the distributive property to represent decomposing the rectangle into two smaller rectangles.
El jardín rectangular de Noah mide 5 yardas por yardas. En la cuadrícula, dibuja un diagrama del jardín de Noah.
El jardín rectangular de Priya mide 6 yardas por yardas. En la cuadrícula, dibuja un diagrama del jardín de Priya.
The purpose of this activity is for students to interpret different strategies for multiplying whole numbers and fractions greater than 1 to find the area of a rectangle. Students use a diagram to describe different ways to determine the area of a shaded region. Consider having multiple copies of the diagrams available if students want to use a separate diagram for each strategy. Encourage students to draw on the diagram to show how they decomposed the rectangle.
Students use what they have learned about area to construct different reasonable arguments for effective calculations of the area (MP3).
Compañero A
Jada:
Priya:
Tyler:
Compañero B
Clare:
Diego:
Elena:
Comparte tu respuesta con tu compañero. ¿En qué se parecen sus respuestas? ¿En qué son diferentes?
“Hoy encontramos el área de rectángulos que tienen un lado de longitud fraccionaria usando varias estrategias de descomposición. ¿Cómo podemos describir las estrategias que usamos hoy?” // “Today we tried several different strategies for decomposing rectangles with a fractional side length to find the area of a rectangle. How can we describe the strategies we used today?” (We can decompose the rectangle into two smaller rectangles and add the areas. We can find the area of a larger rectangle and then subtract the area of a smaller rectangle.)
Record answers for all to see. Keep the display visible so students can refer to it in future lessons.