Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Estimation Exploration is to invite students to think about small fractions of a quantity in context. The mosaic pictured here is made up of many small square tiles. Square tiles are arranged in a complex pattern and are not identical in size but students can relate the denominator of a fraction giving the size of each tile, relative to the whole mosaic, to the total number of tiles making the mosaic. This helps them think of a fraction with a large denominator which prepares them to think about the fraction in this lesson.
¿Qué fracción de la imagen completa es 1 baldosa cuadrada?
Escribe una estimación que sea:
| muy baja | razonable | muy alta |
|---|---|---|
Small Grids Handout
In this activity, students to share what they know about one tenth and one hundredth, and consider what they might know about one thousandth. Students make a poster showing what they know about these numbers and then discuss the different representations they made. If students show tenths, hundredths or thousandths on a number line or with base ten diagrams, highlight these representations in the Activity Synthesis, as they are familiar from IM Grade 4.
This activity is meant to be an invitational opportunity for students to bring their lived experience into the math classroom. Consider taking a walk through the community where your students live and noticing places that decimals are seen and used. Take pictures or notes that capture the details of your observations. Be prepared to share these artifacts with students during the Activity Synthesis.
This relationship can be seen when numbers are written as decimals or fractions. When students see this common relationship between the decimal place values they look for and make use of structure (MP7).
El cuadrado grande representa 1. Está dividido en 10 rectángulos de igual tamaño. ¿Qué número representa el rectángulo sombreado?
Explica o muestra tu razonamiento.
Cada parte del rectángulo del diagrama anterior ahora está dividido en 10 cuadrados pequeños de igual tamaño. ¿Qué número representa el cuadrado pequeño sombreado?
Explica o muestra tu razonamiento.
El cuadrado pequeño sombreado del diagrama anterior ahora está dividido en 10 rectángulos pequeños de igual tamaño. Uno de esos rectángulos pequeños está sombreado. ¿Qué número representa el rectángulo pequeño sombreado?
Explica o muestra tu razonamiento.
¿Cómo piensas que se escribe como un decimal? Explica o muestra tu razonamiento.
| fracción | decimal |
|---|---|
| 0.1 | |
| 0.01 | |
| ? |
“Hoy representamos 1 décimo, 1 centésimo y 1 milésimo de distintas formas. ¿De qué formas pueden representar 1 centésimo?” // “Today we represented 1 tenth, 1 hundredth, and 1 thousandth in different ways. What are some different ways that you can represent 1 hundredth?” (as a fraction , as a decimal 0.01, or with a drawing)
“¿De qué formas pueden representar 1 milésimo?” // “What are some different ways that you can represent 1 thousandth?” (, 0.001, or with a drawing, but it’s so small and there are so many of them in the whole that the drawing is not that helpful)