Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Estimation Exploration is for students to use their experience with the number line, decimals, and fractions to estimate the value of a number located on the number line. Students may answer with a fraction but are likely to write a decimal since they have been working with decimals for the last several lessons. In the Activity Synthesis, students reflect on how having tick marks for each tenth would help improve their estimate.
¿Qué número podría representar el punto que está en la recta numérica?
Escribe una estimación que sea:
| muy baja | razonable | muy alta |
|---|---|---|
The purpose of this activity is for students to use place value understanding to accurately label number lines and then estimate the value of a labeled point. When they label the tick marks, students will use their knowledge that a tenth is a tenth of one and a hundredth is a tenth of a tenth. When they estimate the value of the labeled point, students will also use their understanding that there are ten thousandths in each hundredth. This gives students an opportunity to make sense of each quantity and place it accurately on the number line (MP2).
The activity begins with a group discussion about how Jada labeled a number on the number line. This prepares students for the work of the activity by:
As students discuss and justify their decisions, they share a mathematical claim and the thinking behind it (MP3).
Jada intenta ubicar 15.53 en la recta numérica. ¿Crees que ubicó el número con precisión?
En cada recta numérica hay un número ubicado entre 2 marcas. Escribe los números que le corresponden a esas dos marcas. Después estima el número.
Optional
| número entero más cercano | décima más cercana | centésima más cercana | |
|---|---|---|---|
| 34.482 | |||
| 99.909 | |||
| 5.555 | |||
| 19.509 |
“Hoy redondeamos decimales al entero, a la décima y a la centésima más cercanos” // “Today we rounded decimals to the nearest whole, tenth, and hundredth.”
Display:
Tyler said that 0.345 rounds to 0.3. Jada said 0.345 rounds to 0.35.
“¿Con quién están de acuerdo? ¿Por qué?” // “Who do you agree with? Why?” (I agree with Tyler if we’re rounding to the tenths place. I agree with Jada if we’re rounding to the hundredths place.)
“Escriban otros tres números que al redondear a la décima más cercana, se obtenga 0.3. También escriban otros tres números que al redondearlos a la centésima más cercana, se obtenga 0.35” // “Write three other numbers that round to 0.3 to the nearest tenth and three other numbers that round to 0.35 to the nearest hundredth.” (0.342, 0.32, 0.299 round to 0.3, and 0.351, 0.349, 0.352 round to 0.35.)