Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
¿Cuántos cubos hay en el tazón?
Escribe una estimación que sea:
| muy baja | razonable | muy alta |
|---|---|---|
The purpose of this activity is for students to review the concept that volume is the number of unit cubes required to fill a space without gaps or overlaps. Students are asked to find all of the different ways that they can arrange 126 sugar cubes to create a rectangular prism. This provides practice with factoring since the side lengths will be factors of 126. If students struggle to find factors of 126, it may be worthwhile to pause early on in the task and discuss the different strategies students are using to find factors of 126.
A variety of different suggestions for how to pack the cubes should be anticipated and encouraged with the focus on how students decide on a particular shape of rectangular prism. In practice, many concerns influence the actual choice, such as the amount of packaging material needed and how the package fits on a store shelf. When students interpret the meaning of the numbers in the context, they reason abstractly and quantitatively (MP2).
The goal of the Activity Synthesis is to share ideas about predictions for how the cubes are packaged and how students decided they should be packaged.
En una compañía se empacan 126 cubos de azúcar en cada caja. Cada caja es un prisma rectangular.
¿Cuáles son algunas maneras posibles de empacar los cubos?
The purpose of this activity is for students to solve problems about the volume of different structures. While students can find products of the given numbers, those products do not represent the actual volumes of the structures because neither the Great Pyramid of Giza nor the Empire State Building is a rectangular prism. The pyramid steadily decreases in size as it gets taller, while the Empire State Building also decreases in size at higher levels but not in the same regular way as the pyramid. With not enough information to make a definitive conclusion, students can see that both structures are enormous and that their volumes are roughly comparable, close enough that more studying would be needed for a definitive conclusion (MP1).
La Gran Pirámide de Giza se construyó en Egipto hace más de 4,000 años. En la actualidad, mide 137 metros de alto. La base de la pirámide es un cuadrado. Cada lado de la base mide 230 metros de largo. Si la forma de la pirámide fuera un prisma rectangular, ¿cuál sería el volumen del prisma?
El Empire State Building se encuentra en la ciudad de Nueva York. Su base mide 129 metros por 57 metros. El edificio mide 381 metros de alto. Estima el volumen del Empire State Building.
“Al comienzo del año exploramos el volumen. ¿Qué recuerdan sobre el trabajo que hicimos en la unidad 1?” // “We started the year by exploring volume. What do you remember about the work we did in Unit 1?” (We used cubes. We learned formulas.)
“¿Cómo usaron en la lección de hoy lo que aprendieron en la unidad 1?” // “How did you apply what you learned in Unit 1 in today’s lesson?” (I knew that the volume of a rectangular prism is the product of its length, width, and height and that it is the product of the area of its base and height. I used those formulas to calculate volumes of different rectangular prisms.)