Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to carefully analyze and compare features of equations. In making comparisons, students have a reason to use language precisely (MP6). The activity also enables the teacher to hear the terminologies students know and how they talk about characteristics of different equations.
During the Synthesis, students build on their work in the unit with addend-unknown problems to describe the relationship between a subtraction equation and an addition equation with an unknown addend. Students will continue to make sense of and begin to produce equations in the next section.
¿Cuáles 3 van juntas?
A
B
C
D
The purpose of this activity is for students to make sense of a problem before solving it by familiarizing themselves with a context and the mathematics that might be involved (MP1). Students are asked to tell a story about an image in order to generate observations that lead them to ask mathematical questions about the context. This prepares students to solve story problems about the given context in the second activity.
MLR8 Discussion Supports. Display the following sentence frames to support partner discussion:
¿Qué preguntas matemáticas puedes hacer acerca de esta imagen?
The purpose of this activity is for students to solve a variety of story problems that could be represented as an equation with an unknown addend. Students solve Put Together/Take Apart, Addend Unknown; Compare, Difference Unknown; and Add To, Change Unknown problems. Students may solve in any way they want and should be encouraged to explain how their representations and solution methods match the actions or quantities in each story (MP2). Listen for the ways students explain how their representations, including any expressions or equations they may use, represent the story.
Look for ways students' understanding of story problems and the types of representations they use have developed over the course of the unit. In particular, look for students who show they may be thinking flexibly about addition or subtraction when solving problems that involve an unknown addend, including Add To, Change Unknown problems. This idea is explored in the Lesson Synthesis, although all students are not expected to use this strategy at this point in the course.
Priya tiene 10 fichas geométricas.
7 son triángulos.
El resto son cuadrados.
¿Cuántas fichas geométricas son cuadrados?
Muestra cómo pensaste. Usa dibujos, números o palabras.
Elena tiene 4 fichas geométricas.
Tyler tiene 6 fichas geométricas.
¿Cuántas fichas geométricas menos tiene Elena que Tyler?
Muestra cómo pensaste. Usa dibujos, números o palabras.
3 estudiantes trabajan en una mesa.
Luego, algunos estudiantes más se unen.
Ahora hay 8 estudiantes en la mesa.
¿Cuántos estudiantes se unieron al grupo?
Muestra cómo pensaste. Usa dibujos, números o palabras.
None
The purpose of this activity is for students to choose from activities that offer practice adding and subtracting within 10. Students choose from previously introduced stages of these centers:
Escoge un centro.
Captura cuadrados
Revuelve y saca
¿Qué hay a mis espaldas?
Display and read this problem from the second activity:
3 students work at a table.
Then some more students join.
Now there are 8 students at the table.
How many students join the group?
“Cuéntenle a su compañero lo que ocurrió en esta historia” // “Tell your partner what happened in this story.”
Monitor for students who emphasize the actions to share.
Display:
“¿Esta ecuación corresponde a lo que ocurre en la historia? ¿Por qué sí o por qué no?” // “Does this equation match what happens in the story? Why or why not?” (No. The story is about some students joining, we just don’t know how many. Addition would match the story better.)
Display:
“Escuché a algunas personas decir que la suma correspondería mejor a la historia porque algunos estudiantes se unieron, solo que no sabemos cuántos” // “I heard some people say that addition would better match the story because some students joined, we just didn’t know how many.”
“¿Podemos usar para averiguar qué número podría hacer que esta ecuación fuera verdadera? ¿Por qué?” // “Can we use to find what number would make this equation true? Why?” (We can because subtraction is like finding an unknown addend.)
“Al resolver diferentes tipos de problemas-historia, aprendimos que restar es como encontrar el valor de un sumando desconocido. Si tenemos que encontrar un sumando desconocido, podemos restar. Si necesitamos restar, podemos pensar en cuánto sumarle al número más pequeño” // “We’ve learned from solving different kinds of story problems that subtraction is like finding the value of an unknown addend. If we have to find an unknown addend, we can subtract. If we need to subtract, we could think about how much to add to the smaller number.”
“Incluso si no corresponde a las acciones, aún podemos usarla para resolver el problema porque podemos usar la resta para encontrar un sumando desconocido” // “Even though doesn’t match the actions, we can still use it to solve the problem because we can use subtraction to find an unknown addend.”
Resolvimos problemas tipo “¿Hay suficientes?”. Decidimos cuáles cantidades eran “más” o “menos”.
Resolvimos problemas-historia sobre “¿Cuántos más?” y “¿Cuántos menos?”.
Andre tiene 4 cubos.
Clare tiene 10 cubos.
¿Cuántos cubos menos tiene Andre que Clare?
Aprendimos que la diferencia entre una cantidad más grande y una cantidad más pequeña es la respuesta a “¿Cuántos más?” o “¿Cuántos menos?”.
Andre tiene la cantidad más pequeña.
Clare tiene la cantidad más grande.
La diferencia es 6 cubos.
Aprendimos que estos problemas se pueden resolver con una suma o una resta.
o