Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This Warm-up prompts students to make sense of a problem before solving it, by familiarizing themselves with a context and the mathematics that might be involved. Students observe images that show three ways of making a T shape, using sticky notes, a context they will see in the first activity.
This prompt gives students opportunities to look for structure (MP7)—specifically, the number and orientation of the sticky notes of which each T shape is composed—and make use of it to solve problems later.
¿Qué observas? ¿Qué te preguntas?
This optional activity prompts students to analyze a design problem that involves fractional measurements. Students determine which of the three designs from the Warm-up would fit on a folder that is 9 inches wide and 12 inches tall. To do so, they find the heights and widths of each design using addition, subtraction, multiplication, or a combination of operations.
Tyler hace una figura en forma de T con notas adhesivas pequeñas para decorar una carpeta.
El lado más largo de la nota adhesiva mide pulgadas. El lado más corto mide pulgadas. La carpeta mide 9 pulgadas de ancho y 12 pulgadas de alto.
Tyler podría organizar las notas adhesivas de estas 3 maneras:
¿La carpeta tiene el alto y el ancho suficientes para que quepan sus diseños? Si es así, ¿cuál o cuáles diseños cabrían? Muestra tu razonamiento.
In this optional activity, students interpret and solve problems involving fractional measurements and operations of fractions in the context of distances on a map. First, students examine the measurements on the map and use them to answer questions. Next, they interpret given expressions and consider what the expressions might represent in the situation. Finally, they write a new problem, based on the given quantities and information. The work here prompts students to reason quantitatively and abstractly (MP2).
This activity uses MLR6 Three Reads. Advances: reading, listening, representing.
MLR6 Three Reads
Jada y Noah están de excursión en un parque. Este es un mapa de los senderos. Se muestra la longitud de cada sendero.
Jada y Noah caminan por el sendero anaranjado del punto F al punto E. Dan toda la vuelta por el sendero rojo hasta regresar al punto E. Después, caminan desde el punto E de regreso al punto F.
¿Cuántas millas caminaron? Muestra tu razonamiento.
Estas son dos expresiones que representan algunas situaciones de la caminata. ¿Qué pregunta se podría responder con la ayuda de cada expresión? Escribe la pregunta y la respuesta.
Invite 2–3 students to share their responses to the last two problems.
In this optional activity, students hone the skills they have learned in this unit: multiplying a fraction by a whole number, adding and subtracting fractions with the same denominator (including mixed numbers), and adding tenths and hundredths. Students are each given a fractional expression. They evaluate the expression, find a classmate whose expression is different but has the same value (verifying that this is indeed the case), and write a new expression that also has the same value. (See Student Responses for the matched expressions.)
In addition to evaluating expressions, students who have Cards J, K, and L also will need to think about fractions that are equivalent to the value of their expression in order to find their matches. For instance, a student may reason that the value of Card K is or , but the match—Card 2—shows . Consider using these expressions to differentiate for students who could use an extra challenge.
Tu profesor te va a dar una tarjeta que tiene una expresión.
“En las últimas lecciones, resolvimos diversos problemas en los que había fracciones y operaciones de fracciones. Vimos problemas sobre situaciones y también problemas que no eran sobre situaciones” // “In the past few lessons, we solved a variety of problems that involve fractions and operations of fractions. We saw problems about situations and those that are not about situations.”
“¿Qué estrategias les ayudaron a comenzar a resolver problemas que tuvieran fracciones?” // “What were some helpful ways to get started when solving problems with fractions?” (Make sense of the problem and what it is asking. Read any word descriptions carefully and more than one time. Make sense of the quantities.)
“¿Qué estrategias les ayudaron a evitar errores comunes?” // “What were some helpful ways to prevent making common errors?” (Check the numbers, including numerators and denominators, carefully. Think about what the numbers mean in the situation.)
“¿Cómo supieron si sus respuestas tenían sentido?” // “How did you know if your answers make sense?” (Check to see if the result makes sense in the situation. Discuss with a partner. Work backward from the solution toward the problem.)