Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Choral Count is for students to practice counting by 12, 15, and 24, and to notice patterns in the count after 10 multiples. This understanding will help students later in this lesson when they represent quantities that are 10 times as many, using tape diagrams.
When they use the words “multiple,” “value,” and “place,” students use language precisely (MP6).
In this activity, students are given a diagram that shows two quantities, one of which is 10 times as much as the other. They identify possible values and possible equations that the diagram could represent.
Students see that a single unmarked diagram could represent many possible pairs of values that have the same relationship (in this case, one is 10 times the other) and be expressed with many equations.
The activity also reinforces what students previously learned about the product of a number and 10—namely, that it ends in zero and each digit in the original number is shifted one place to the left because its value is 10 times as much (MP7).
Este es un diagrama que representa 2 cantidades, A y B.
¿Cuáles son algunos valores posibles de A y B?
Selecciona las ecuaciones que se pueden representar con el diagrama.
En el caso de las ecuaciones que no pueden representarse con el diagrama:
Consider repeating, with another number, to reinforce the idea.
Display possible values for A, and corresponding values for B, in a table such as this:
| value of A | value of B |
|---|---|
In this activity, students analyze situations in which one quantity is 10 times as much as another quantity. Students may use different strategies to determine the unknown quantity. For example, they may rely on counting as a strategy, or use place-value understanding to explain regularity in the products of numbers with 10 (MP8). The reasoning in this lesson prepares students to consider, in the next section, quantities that are 100 times and 1,000 times as many.
Usa el diagrama para completar la tabla.
| valor de A | valor de B |
|---|---|
| 14 | |
| 1,000 | |
| 160 | |
| 850 | |
| 1,000 | |
| 2,070 | |
| 3,900 |
Selecciona algunos valores de tu tabla para explicar o mostrar:
Cómo encontraste el valor de B cuando el valor de A era conocido.
If students write a value other than 10,000 for B when A is 1,000, consider asking:
“Hoy usamos diagramas para representar valores que son 10 veces otros valores. Observamos algunos patrones cuando analizamos los valores” // “Today we used diagrams to represent values that are 10 times as much as different values. We noticed some patterns when we analyzed the values.”
Display:
“¿Qué otras afirmaciones podemos hacer sobre este diagrama que siempre sean verdaderas?” // “What are some other statements we can make about this diagram that always would be true?” (The value of B is always 10 times the value of A. If I know the value of A, I can always figure out the value of B, using multiplication. If I know the value of B, I can always figure out the value of A.)
Focus discussion on how the diagram shows that the value of A is 10 times as much as the value of B no matter what the value of each rectangle is.
Aprendimos a usar la multiplicación y la frase “_____ veces” para comparar dos cantidades.
Primero, usamos cubos y dibujos para representar las cantidades. Por ejemplo: Andre tiene 3 cubos y Han tiene 12 cubos. Comparamos el número de cubos así:
Dijimos: “Han tiene 4 veces la cantidad de cubos que Andre tiene”.
Dibujamos diagramas que muestran 3 cubos para Andre y 4 veces esa cantidad para Han.
Dibujar todas las unidades de cada cantidad era menos práctico a medida que los números se hacían mayores, así que usamos diagramas más sencillos y con números para representar los tamaños de esas cantidades.
Si Andre tiene 30 cubos y Han tiene 4 veces esa cantidad, podemos representar la comparación con un diagrama como este:
Por último, comparamos cantidades en las que una cantidad es 10 veces la otra. Usamos lo que ya sabemos sobre patrones numéricos para multiplicar un número por 10.