Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
This True or False? routine prompts students to recall what they know about addition of fractions with a common denominator and about fractions that are equivalent to whole numbers. The understandings elicited here will be helpful later in the lesson when students find sums or differences of two fractions, or of a whole number and a fraction, to solve problems about the perimeters of rectangles with fractional side lengths.
En cada caso, decide si la afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.
In this activity, students use their knowledge of feet and inches and the perimeter of a rectangle to solve problems in context. Given the perimeter and one length of a room, they determine its width, in feet, and the distance along two walls, in inches. Students could reason about each problem in a number of ways. As they interpret the quantities in the situation and represent them with expressions or equations, students practice reasoning quantitatively and abstractly (MP2).
Una habitación rectangular tiene un perímetro de 39 pies y un largo de pies.
Unknown Measurements Large Cards (groups of 12), Spanish
Unknown Measurements Small Cards (groups of 4), Spanish
This activity allows students to consolidate their learning from the past few units to solve problems about length measurements in a mathematical context.
First, students find the perimeter or unknown side length of various quadrilaterals. To do so, they apply what they know about adding and subtracting fractions and about rewriting certain fractions as whole numbers. Next, they determine which pairs of figures have a certain multiplicative relationship—for instance, which figure has a perimeter that is 9 times that of another figure. Because the measurements are in different units, students need to attend to the relationship between the units and perform conversions accordingly.
The activity can be done in the format of a Gallery Walk or by giving each group a full set of the diagrams from the blackline master.
Tu profesor colgó 6 cuadriláteros alrededor del salón. Cada uno tiene una longitud de lado desconocida o un perímetro desconocido.
Escoge dos diagramas (uno que tenga una longitud desconocida y otro que tenga un perímetro desconocido). Asegúrate de que cada figura sea escogida por al menos una persona de tu grupo.
Encuentra los valores desconocidos. Muestra cómo razonaste y recuerda incluir las unidades.
Discute las respuestas con tu grupo hasta que todos estén de acuerdo en cuáles son las medidas desconocidas de las 6 figuras.
Responde una de las siguientes preguntas. Explica o muestra cómo razonaste.
Select students to briefly share the 6 unknown measurements and their reasoning. Display their calculations or record them for all to see. Then discuss how students reasoned about whether the comparison statements in the last problem were true.
“¿Cómo supieron que el perímetro de la figura B es 2 veces el de la figura D?” // “How did you know that the perimeter of B is 2 times that of D?” (I know that feet and inches are related, and that 1 foot is 12 inches. So I recognized that 24 inches is twice 1 foot.)
“¿Cómo encontraron una figura que tuviera un perímetro que fuera 1,000 veces el perímetro de otra figura?” // “How did you find a figure with a perimeter 1,000 times that of another figure?” (I know that a kilometer is 1,000 meters, so I started with A and E, converted their perimeters, and then checked if one perimeter is indeed 1,000 times as long as the other.)
“¿Cómo supieron que el perímetro de la figura F era 9 veces el perímetro de la figura B?” // “How did you know that the perimeter of F is 9 times that of B?” (I converted the yards into feet, and then I could see that 18 feet and 2 feet are related: .)
Resolvimos problemas y acertijos convirtiendo unidades de medida (galones, cuartos de galón, tazas, libras, onzas, yardas, pies y pulgadas) y comparando las medidas en diferentes unidades. Vimos que los problemas se podían resolver de diferentes formas.
Por ejemplo, si Priya lanzó un disco a 16 yardas y esto es 4 veces la distancia del lanzamiento de Jada, ¿qué tan lejos lanzó Jada el disco, en pies?
En las últimas dos lecciones, resolvimos problemas de multiplicación y de comparación que involucraban perímetros de rectángulos y de otros cuadriláteros.