The purpose of this Number Talk is to encourage students to make use of structure to perform division involving increasingly greater dividends and divisors (MP7). The reasoning here helps students to develop fluency in finding quotients of multi-digit numbers. It also reinforces students’ familiarity with factors of 180 and 360, which will be helpful as they continue to work with angle measurements.
Launch
Display one expression.
“Hagan una señal cuando tengan una respuesta y puedan explicar cómo la obtuvieron” // “Give me a signal when you have an answer and can explain how you got it.”
1 minute: quiet think time
Activity
Record answers and strategies.
Keep expressions and work displayed.
Repeat with each expression.
Encuentra mentalmente el valor de cada expresión.
Student Response
Loading...
Advancing Student Thinking
Activity Synthesis
“¿Cómo se relacionan las expresiones?” // “How are the expressions related?”
“¿Cómo los ayudó encontrar el valor de una expresión a encontrar el valor de la siguiente expresión?” // “How did finding the value of one expression help you find the value of the next expression?”
Consider asking:
“¿Alguien puede expresar el razonamiento de _____ de otra forma?” // “Who can restate _____’s reasoning in a different way?”
“¿Alguien usó la misma estrategia, pero la explicaría de otra forma?” // “Did anyone have the same strategy but would explain it differently?”
“¿Alguien pensó en la expresión de otra forma?” // “Did anyone approach the expression in a different way?”
“¿Alguien quiere agregar algo a la estrategia de _____?” // “Does anyone want to add on to _____’s strategy?”
Activity 1
Standards Alignment
Building On
Addressing
4.MD.C.6
Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.
The purpose of this activity is for students to use a protractor to measure angles. In previous lessons, students learned to read the measurement of an angle with a protractor already in position. Now they decide where to place the tool, how to align it with the vertex and the rays of the angle, and which set of numbers on the protractor to use.
Some of the figures in the activity explicitly show angles formed by two rays. In others, students are asked to find and measure the angles within polygons. In both cases, students may find it necessary to extend one or both rays of an angle so that it can be measured more effectively or precisely (MP6). Doing so reinforces the idea that the size of an angle is not determined by the length of the segments that frame it, but by the space between the rays that compose the angle.
Monitor for and select to share in the Activity Synthesis students with the following approaches:
Align the rays of an angle to tick marks on the protractor and count from one ray to the other in the same way that students used the clock face to estimate angle measurement in earlier lessons.
Don’t align either ray of an angle to or on the protractor and instead find the difference of the numbers where the two rays land on the protractor.
Align one ray of an angle with the line or the line on the protractor and always read from the scale that starts with .
The approaches are sequenced from more intuitive to more conventional to elicit the different ways students may position a protractor and use it to determine the measure of angles. In addition to how to position the tool, prompt students to explain which set of numbers to use and whether their measurements make sense. Aim to elicit both key mathematical ideas and a variety of student voices, especially students who haven’t shared recently.
MLR8 Discussion Supports. Synthesis: With each strategy for using the protractor that is shared, invite students to turn to a partner and restate what they heard, using precise mathematical language. Advances: Listening, Speaking
Launch
Groups of 2
Give each student a protractor and access to rulers or straightedges.
Activity
5 minutes: independent work time
1–2 minutes: partner discussion
As you monitor for the approaches listed in the Activity Narrative, consider asking:
“¿Cómo midieron este ángulo?” // “How did you measure this angle?”
“¿Cómo decidieron dónde colocar el transportador?” // “How did you decide to position the protractor?”
“¿Cómo usaron los números del transportador para encontrar la medida del ángulo?” // “How did you use the numbers on the protractor to determine the angle measure?”
Usa un transportador para encontrar la medida de cada ángulo, en grados.
1.
2.
3.
Si te queda tiempo: Usa un transportador para medir los ángulos que están marcados en el rombo.
Activity Synthesis
Invite previously selected students to share in the given order. Record or display their work for all to see.
Connect students’ approaches by asking:
”¿En qué se parecen las formas de medir? ¿En qué son diferentes?” // “How are the ways of measuring the same, and how are they different?” (We had to line up both rays on the protractor to measure the angles. Where we placed the protractor and how we used the numbers on it were different.)
“¿Cuáles son algunas ventajas de alinear un rayo de un ángulo con el del transportador?” // “What are some benefits of aligning one ray of an angle with on the protractor?” (The measurement can be identified right away: it’s the number where the second ray lands on the protractor. Aligning the first ray with a non-zero number means having to count or subtract two numbers before finding the measurement.
Connect students’ approaches to the learning goal by asking:
“Sin importar cuál forma eligieron, ¿cómo podían saber si su medida era razonable? ¿Cómo pueden estar seguros de que sus medidas tienen sentido?” // “No matter which way you choose, how can you tell if your measurement was reasonable? How can you make sure your measurements make sense?” (Compare them against a familiar angle, like . If an angle looks greater than a right angle, it can’t be less than .)
Activity 2
Standards Alignment
Building On
Addressing
4.G.A.1
Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.
In this activity, students fold paper to form right angles and learn that intersecting lines that create 4 right angles are perpendicular lines. They then identify perpendicular segments in two-dimensional figures and explain how they know the segments are perpendicular.
To create four right angles that share the same vertex by folding generally means making two folds through the same point. The first fold, which can be done in any way (as long as it goes through point P, in this case), creates two straight angles. The second involves folding through the point again such that the edges formed by the crease of the first fold match up exactly, creating two equal halves or two angles.
While students have experience with folding paper to partition a shape or an angle, some may need support in folding precisely. Consider providing a straightedge to facilitate the folding.
This activity uses MLR2 Collect and Display. Advances: conversing, reading, writing.
Representation: Internalize Comprehension. After students have had some time to infer the meaning of “perpendicular lines,” pause the activity. Invite them to look around the room and share examples and non-examples of perpendicular lines. Supports accessibility for: Visual-Spatial Processing, Memory, Attention
Launch
Groups of 2–4
Give each student 2 pieces of paper and colored pencils. Provide access to straightedges or rulers, in case requested.
Read the opening prompts and the first question.
“¿Qué creen que hizo Lin con su hoja? Marquen un punto en una hoja de papel y traten de doblarla como podría haberlo hecho Lin” // “What do you think Lin did with her paper? Mark a point on a piece of paper and try folding it as Lin might have done.”
2–3 minutes: quiet think time on the first problem
Pause for a discussion. Invite 2-3 students to share how they think Lin met the challenge.
Activity
6–7 minutes: group work on the remaining questions
Circulate to listen for and collect the language students use to define perpendicular lines.
Record students’ words and phrases on a display and update it throughout the lesson.
Monitor for students who:
Reason that their folded lines form right angles because the first fold makes two angles through the point and the second fold splits each angle into halves, making four angles.
Use a protractor (or a square corner) to verify perpendicularity of the sides of the shapes in the last problem (rather than relying on appearance).
Activity Synthesis
“¿Qué afirmación podemos escribir para explicarle a otro estudiante qué son las rectas perpendiculares?” // “What statement could we write to explain to another student what perpendicular lines are?” (Lines that intersect and create 4 right angles.)
Remind students that they can use words or phrases from their personal word walls in their responses.
Invite students to share the perpendicular lines they created by folding.
“¿Cómo pueden estar seguros de que los pliegues que hicieron al doblar son perpendiculares o forman ángulos de ?” // “How can you be sure that the creases from your folding are perpendicular or created angles?” (My first fold makes two angles. My second fold splits each of those into two equal angles, so each one must be . We can measure each angle with a protractor.)
“En el último problema, ¿cómo supieron cuáles figuras tenían lados perpendiculares?” // “In the last problem, how did you know which shapes have perpendicular sides?” (By measuring the angles with a protractor, or by comparing them with a square corner.)
Lesson Synthesis
“Hoy usaron un transportador para medir diferentes ángulos. También aprendieron que las rectas que se intersecan y forman 4 ángulos rectos se llaman rectasperpendiculares. Supongan que le tienen que mostrar a otro estudiante, que no haya venido hoy, cómo medir los ángulos marcados con una F y una G” // “Today you used a protractor to measure different angles. We also learned that intersecting lines that create 4 right angles are perpendicular lines. Suppose you are to show a another student, who is absent today, how to measure the angles labeled F and G.”
Display:
“¿Cómo le describirían el proceso de medición de ángulos para que le quede claro?” // “How would you describe the process of measuring the angles so that it is clear to them?”
“¿Su descripción de cómo medir el ángulo G sería diferente a la del ángulo F?” // “Would your description for measuring Angle G be different from that for Angle F?”
“¿Hay rectas perpendiculares en alguno de los diagramas? ¿Cómo podemos saberlo?” // “Are there any perpendicular lines in either of the diagrams? How can we tell?” (No, none of the angles are right angles.)
“Tómense 1 o 2 minutos para agregar las palabras nuevas de la lección de hoy a su muro de palabras. Compartan sus palabras nuevas con un compañero y agreguen las nuevas ideas que surjan de la conversación” // “Take 1–2 minutes to add the new words from today’s lesson to your word wall. Share your new entries with a neighbor and add any new ideas you learn from your conversation.”
Standards Alignment
Building On
Addressing
4.NBT.B.6
Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
If students line up rays on the protractor, but their angle measurements are not yet accurate, consider asking:
“¿Cómo usaste el transportador para medir este ángulo?” // “How did you use the protractor to measure this angle?”
“Teniendo en cuenta los ángulos que has medido en lecciones anteriores, ¿tiene sentido que la medida de este ángulo sea _____ grados? ¿Por qué sí o por qué no? Si no tiene sentido, ¿de qué otra manera puedes usar el transportador para revisar tu medida?” // “Based on the angles you have measured in previous lessons, does _____ degrees make sense as the measure of this angle? Why or why not? If not, then what is another way you could use the protractor to check your measurement?”
Tyler le pone un reto a Lin: “Sin usar un transportador, dibuja cuatro ángulos de . Todos los ángulos tienen su vértice en el punto P”.
Lin dobla su hoja dos veces, asegurándose de que cada doblez pase por el punto P. Después ella traza los pliegues.
Tu profesor te dará una hoja de papel. Dibuja un punto en ella. Después, muestra cómo Lin podría resolver el reto.
Cuando Lin dobla la hoja, los pliegues forman un par de rectas perpendiculares. ¿Qué crees que significa “rectas perpendiculares”?
Usa el método de Lin para hacer dos nuevas rectas perpendiculares que pasen por el mismo punto. Traza los pliegues con un color diferente.
¿Cuáles figuras tienen lados que son perpendiculares entre sí?
Marca los lados perpendiculares. Explica cómo sabes que los lados son perpendiculares.
Student Response
Loading...
Advancing Student Thinking
If students make a second fold that results in a pair of angles one size and another pair of a different size, consider asking:
“¿Cómo decidiste en dónde doblar la hoja?” // “How did you decide where to fold the paper?”
“¿Cómo cambiarías los dobleces para crear cuatro ángulos de ?” // “How might you adjust your folding to create four angles?”