Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of this Estimation Exploration is for students to think about dividing a unit fraction into smaller pieces. In the lesson, students will be given extra information so they can determine the exact size of shaded regions like the one presented here.
¿Cuánto está coloreado?
Escribe una estimación que sea:
| muy baja | razonable | muy alta |
|---|---|---|
Priya y Mai usan estos diagramas para encontrar el valor de .
Diagrama de Priya
Diagrama de Mai
Encuentra el valor que hace que la ecuación sea verdadera.
Han dibuja este diagrama para representar . ¿De qué manera el diagrama muestra ? Explica o muestra cómo razonaste.
Encuentra el valor que hace que la ecuación sea verdadera. Explica o muestra cómo razonaste.
In the previous activity, students explained how tape diagrams represent equations and they used diagrams to find the value of division expressions. In this activity, students examine a mistake in order to recognize the relationship between the number of pieces the fraction is being divided into and the size of the resulting pieces. When students decide whether or not they agree with Noah's work and explain their reasoning, they critique the reasoning of others (MP3).
This activity uses MLR3 Critique, Correct, Clarify. Advances: reading, writing, representing
Noah intenta usar un diagrama como el de Mai para resolver este problema. Esto es lo que él hizo.
, porque dividí en 2 partes iguales y está coloreado de .
In this activity, students notice as the divisor increases for a given dividend, the quotient gets smaller. Students may recognize and explain the relationship between multiplication and division. For example, they may notice that dividing one quarter into two equal pieces is the same as finding the product of . This relationship is not explicitly brought up in the Activity Synthesis, but if students describe this relationship, connect it to the student work that is discussed, as appropriate. When students notice a pattern, they look for and express regularity in repeated reasoning (MP8).
En cada caso, encuentra el valor que hace que la ecuación sea verdadera. Si te ayuda, usa un diagrama.
¿Qué patrones observas?
¿Cómo encontrarías el valor de dividido entre cualquier número entero? Explica o muestra cómo razonaste.
Display the expression and Han’s diagram from the lesson:
“¿De qué manera el diagrama de Han representa la expresión?” // “How does Han's diagram represent the expression?” (The whole diagram is divided into three equal pieces and each third is divided into three equal pieces.)
“¿Qué representa la parte coloreada del diagrama?” // “What does the shaded part of the diagram represent?” ( of the whole.)
Display
“Observamos que al dividir una fracción unitaria entre un número entero el valor es el mismo que al multiplicar la fracción unitaria por una fracción unitaria que tiene como denominador al número entero” // “We noticed that when you divide a unit fraction by a whole number the value is the same as multiplying the unit fraction by a unit fraction with a denominator that is the same as the whole number.“
“Esto siempre funciona. También es lo mismo que multiplicar el denominador de la fracción unitaria por el número entero” // “This always works. It's also the same as multiplying the denominator in the unit fraction by the whole number.”
Display