Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
En cada caso, decide si la afirmación es verdadera o falsa. Prepárate para explicar tu razonamiento.
The purpose of this activity is for students to convert from a smaller metric length unit to a larger metric length unit. In this activity, students divide a three- or four-digit number by 100. The measurements, in centimeters, are whole numbers, but the converted measurements, in meters, are decimals. To find the value of the quotients, students may reason about the meaning of each place value and how that changes when the value is divided by 100. They may also reason that each place value has the value of the place to its left, so shifting two places to the right gives the value for each place (MP2, MP7).
| atleta | salto largo | lanzamiento de jabalina | lanzamiento de bala |
|---|---|---|---|
| Jackie Joyner-Kersee, EE. UU. | 727 cm | 4,566 cm | 1,580 cm |
| Sabine John, Alemania Oriental | 671 cm | 4,256 cm | 1,623 cm |
| Anke Behmer, Alemania Oriental | 678 cm | 4,454 cm | 1,420 cm |
| prueba | centímetros | metros |
|---|---|---|
| salto largo | 727 | |
| lanzamiento de jabalina | 4,566 | |
| lanzamiento de bala | 1,580 |
A la hora de imaginarse cada distancia, ¿cuál unidad de medida es más útil: centímetros o metros? Explica o muestra cómo razonaste.
¿Por qué crees que las distancias se miden al centímetro más cercano?
This activity continues the work of the previous activity as students convert from a smaller metric length unit to a larger metric length unit. Students are given several different conversions and multiple numbers for each set of conversions. They observe that when converting different units, dividing by 100 shifts each digit two places to the right, while dividing by 1,000 shifts each digit three places to the right. This allows students to solidify their understanding that dividing by powers of 10 shifts each digit one place to the right for every power of 10 in the divisor (MP8).
This activity uses MLR1 Stronger and Clearer Each Time. Advances: reading, writing.
| estudiante | distancia (metros) | distancia (kilómetros) |
|---|---|---|
| Diego | 9,513 | |
| Clare | 11,018 | |
| Priya | 8,210 | |
| Andre | 10,000 |
¿Qué patrones observas en la tabla?
Esta es la estrategia de Tyler para dividir un número entero entre 10, entre 100 o entre 1,000.
Descríbele a tu compañero la estrategia de Tyler.
(Haz una pausa para escuchar la instrucción del profesor).
“Hoy hicimos conversiones entre unidades métricas de distancia. Convertimos unidades más pequeñas a unidades más grandes. Observamos y explicamos patrones en números que se dividían entre 10, entre 100 y entre 1,000” // “Today we converted from smaller metric distance units to larger metric distance units. We noticed and explained patterns in numbers when they are divided by 10, by 100, and by 1,000.”
Display the table:
| kilómetros | metros |
|---|---|
| 7,864 | |
| 2.037 |
| kilometers | meters |
|---|---|
| 7,864 | |
| 2.037 |
“¿Cuáles son los valores que faltan en la tabla? ¿Cómo lo saben?” // “What are the missing values in the table? How do you know?” (7.864 kilometers and 2,037 meters. To get from meters to kilometers, I divide by 1,000, and to get from kilometers to meters, I multiply by 1,000, because there are 1,000 meters in a kilometer.)
“¿En qué se parecen convertir de metros (unidades más pequeñas) a kilómetros (unidades más grandes) y convertir de kilómetros (unidades más grandes) a metros (unidades más pequeñas)? ¿En qué son diferentes?” // “How is converting from smaller meters to larger kilometers the same as, and how is it different from, converting from larger kilometers to smaller meters?” (In both cases, the numbers keep the same digits, only their place values change, and they change by 3 place values in both cases. When I go from meters to kilometers, the digits shift 3 places to the right, and when I go from kilometers to meters they shift 3 places to the left.)
If students complete the table with numbers that are greater than the corresponding amount of centimeters, consider asking: