Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
The purpose of an Estimation Exploration is for students to practice the skill of estimating a reasonable answer based on experience and known information. In this lesson, students will find the perimeter and area of rectangles and think about the size of the windows in this image to prepare them for this work.
¿Cuál es el área de 1 ventana?
Escribe una estimación que sea:
| muy baja | razonable | muy alta |
|---|---|---|
The purpose of this activity is for students to plot points that represent the length and width of a rectangle with a given perimeter. Since the perimeter is twice the length plus twice the width, decreasing the length by a certain amount will mean that the width has to increase by the same amount for the perimeter to stay the same.
Monitor for and select students with the following approaches for Jada’s rectangle if it is 2.5 cm long to share in the Activity Synthesis:
The approaches are sequenced from more concrete to more abstract to help students understand the relationship between the length and width of rectangles with a fixed perimeter. Aim to elicit both key mathematical ideas and a variety of student voices, especially students who haven’t shared recently. For an example for each approach, look at the Student Responses.
| largo (cm) | ancho (cm) |
|---|---|
Representa el largo y el ancho de cada rectángulo como un punto en la cuadrícula de coordenadas.
The purpose of this activity is to investigate the possible lengths and widths of a rectangle with a given area. Since the area is the product of length and width, this means that the main operation being used is multiplication or division, contrasting with the previous activity where students investigated the perimeter which is the sum of the side lengths of a rectangle. This means that the calculations are more complex and some of the coordinates of the points that students plot will either be decimals or fractions depending on how students express them. There are some important common characteristics between the lengths and widths for a given area and for a given perimeter which will be examined in the Activity Synthesis (MP7, MP8):
| largo (cm) | ancho (cm) |
|---|---|
Representa el largo y el ancho de cada rectángulo como un punto en la cuadrícula de coordenadas.
“Hoy graficamos largos y anchos de rectángulos en la cuadrícula de coordenadas” // “Today we plotted lengths and widths of rectangles on the coordinate grid.”
Display the graphs from the student solutions to the two activities together.
“¿En qué se parecen las gráficas?” // “How are the graphs the same?” (They both show lengths and widths of rectangles. When the length increases, the width decreases. When the length decreases, the width increases.)
“¿En qué son diferentes las gráficas?” // “How are the graphs different?” (The length and width pairs with perimeter 12 are nicely organized. When the length increases by 1, the width decreases by 1. The length and width pairs with area 16 don't follow a clear pattern. I would not be able to guess any other values. I would have to calculate.)
Generamos patrones y analizamos las relaciones que había entre dos patrones diferentes.
Ejemplo: ambos patrones empiezan en 0.
| regla 1: ir sumando 8. | 0 | 8 | 16 | 24 | 32 | 40 |
| regla 2: ir sumando 2. | 0 | 2 | 4 | 6 | 8 | 10 |
Cada número del patrón de la regla 1 es 4 veces el valor del número correspondiente del patrón de la regla 2. Cada número del patrón de la regla 2 es veces el valor del número correspondiente del patrón de la regla 1. Representamos 2 patrones juntos como puntos en una cuadrícula de coordenadas.
Además, usamos puntos en una cuadrícula de coordenadas para representar otras situaciones, como el largo y el ancho de rectángulos que tienen un área o perímetro dados.
If students express or show other evidence that they are not yet sure how to represent or reason about the width of Jada’s rectangle, consider asking: