Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
In previous lessons, students identified and partitioned halves and fourths of rectangles and circles. The purpose of this activity is for students to reason about the sizes of halves and fourths of the same shape. As a result of their prior work with comparing quantities of objects, students may reason that because four pieces are more than two pieces, a fourth should be larger than a half. When students compare the sizes of a half and a fourth of the same circle and repeat the comparison with a half and a fourth of the same square, they begin to generalize that when you partition a shape into more parts, the size of each part gets smaller (MP8).
Prepárense para explicar cómo pensaron.
Prepárense para explicar cómo pensaron.
Escriban 2 cosas que observan sobre sus piezas.
Priya y Han están compartiendo un roti.
Priya dice: “Quiero la mitad del roti porque las mitades son más grandes que los cuartos”.
Han dice: “Quiero un cuarto del roti porque los cuartos son más grandes que las mitades. Lo sé porque 4 es mayor que 2”.
¿Con quién estás de acuerdo?
Muestra cómo pensaste. Usa dibujos, números o palabras.
Usa el círculo si te ayuda.
MLR8 Discussion Supports
“En esta sección, partimos figuras en partes iguales. ¿Qué aprendieron?” // “In this section, we split shapes into equal pieces. What have you learned?” (I learned that a half is larger than a fourth. I learned that “a quarter” is another way to say, “a fourth.” I learned that when 1 piece is shaded, it is a half or a fourth, but when the entire shape is shaded it’s called “two halves” or “four fourths.”)
Una mitad del cuadrado está sombreada.
Un cuarto, o una cuarta parte, del círculo está sombreado.
2 mitades están sombreadas.
4 cuartos están sombreados.