Not all roles available for this page.
Sign in to view assessments and invite other educators
Sign in using your existing Kendall Hunt account. If you don’t have one, create an educator account.
¿Qué observas? ¿Qué te preguntas?
This activity prompts students to use number lines to illustrate the decomposition of a fraction into sums of other fractions, reinforcing their work from an earlier lesson. Along the way, students recognize that one way to decompose a fraction greater than 1 is to write it as a sum of a whole number and a fraction less than 1. This insight prepares students to interpret and write mixed numbers in later activities.
In this activity, students use number lines to represent addition of two fractions and to find the value of the sum. The addends include fractions greater than 1, which can be expressed as a sum of a whole number and a fraction. Students practice constructing a logical argument and critiquing the reasoning of others when they explain which of the strategies they agree with and why (MP3).
Usa una recta numérica para representar cada expresión de suma y para encontrar su valor.
Optional
Jump Forward Cards
This optional activity gives students an additional opportunity to practice using number lines to decompose fractions into sums of other fractions and to record the decompositions as equations.
The fractions on the cards (shown here) contain no whole numbers or mixed numbers, but some students may use them to find the second addend (and to avoid counting tick marks on the number line). Some also may choose to label each number line with whole numbers beyond 1 to facilitate their reasoning and equation writing.
Estas son 4 rectas numéricas. En cada una hay un punto.
En cada recta numérica, marca el punto con la fracción que representa. Este punto será tu objetivo. Vas a comenzar en 0 y vas a dar 2 saltos hacia adelante para llegar al objetivo.
“Hoy usamos rectas numéricas para descomponer fracciones en sumas de fracciones más pequeñas o en sumas de un número entero y una fracción. También aprendimos que cualquier fracción que sea mayor que 1 se puede escribir como un número mixto” // “Today, we used number lines to decompose fractions into sums of smaller fractions, or sums of a whole number and a fraction. We also learned that a fraction greater than 1 can be written as a mixed number.”
“¿Cómo le explicarían a un compañero que no haya venido hoy qué es un número mixto?” // “How would you explain to a classmate who is absent today what a mixed number is?” (It's a number written as a whole number and a fraction.)
“Veamos algunas de las sumas que encontraron en la segunda actividad. ¿Cuáles sumas se pueden escribir como números mixtos? ¿Por qué?” // “Let’s look at some sums you found in the second activity. Which sums can be written as mixed numbers and why?” ( and , because they are greater than 1.)
“¿Qué número mixto es equivalente a cada una de esas fracciones? ¿Cómo lo saben?” // “What is a mixed number equivalent to each of those fractions? How do you know?” ( and . is equivalent to because and is 1. is equivalent to because is 2 wholes and adding more gives .)